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Eötvös Loránd University,

Dept. of Programming Languages
and Compilers
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Abstract
Smooth integration of domain-specific languages into a general
purpose host language requires absorbing of domain code written
in arbitrary syntax. The integration should cause minimal syntacti-
cal and semantic overhead and introduce minimal dependency on
external tools. In this paper we discuss a DSL integration tech-
nique for the C++ programming language. The solution is based
on compile-time parsing of the DSL code. The parser generator is a
C++ template metaprogram reimplementation of a runtime Haskell
parser generator library. The full parsing phase is executed when
the host program is compiled. The library uses only standard C++
language features, thus our solution is highly portable. As a demon-
stration of the power of this approach, we present a highly efficient
and type-safe version of printf and the way it can be constructed
using our library. Despite the well known syntactical difficulties of
C++ template metaprograms, building embedded languages using
our library leads to self-documenting C++ source code.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classification – C++; D.3.2 [Programming
Languages]: Language Classification – Multiparadigm languages

General Terms Languages

Keywords C++ template metaprogram, DSL integration, Haskell,
Parser generator

1. Introduction
Modern general purpose programming languages have the abil-
ity to express regular programming idioms in a fairly convenient
way: functions, types, classes and class hierarchies, etc. are used to
express the programmer’s intention. In most cases these tools are
applied when the programmer transfers a solution from a specific
problem domain to the general purpose language. Such transforma-
tions require not only good programmer skills in the means of the
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classical programming language terms but a profound understand-
ing of the specific problem domain as well.

As an opposite, Domain-specific languages (DSLs) are created
to express problems in particular domains only. Using DSLs in
specific problem areas have many advantages. DSLs are regularly
more expressive in the intended problem domain. The special syn-
tax of a DSL is able to catch errors specific to the problem domain.
DSLs often invent new constructs to describe domain problems or
they even apply different programming paradigms. Thus, the syn-
tax of a DSL may reflect the usual notations of the domain to make
it usable for the domain experts.

As an example, the SQL language is good for expressing rela-
tional database related problems while general purpose languages
lack this clarity. Relational database related errors are easier to
detect in queries written in SQL syntax because SQL follows the
declarative paradigm.

Although DSLs are indispensable in their domain, vast majority
of the programs execute most of their actions out of that domain.
SQL might be a perfect solution for describing operations related to
relational databases, but database servers will create threads, open
network connections, communicate with the operating system in
the means of a general purpose programming language. The usual
solution is that the desired domain-specific language or languages
are used together with a general purpose programming language.
Most cases the integration of these languages happens by embed-
ding the DSL(s) into the general purpose language with or without
some syntactical quotation.

However, this integration should add minimal syntactical and
semantic overhead to the project. Many strategies exist to provide
smooth integration of the domain languages and the host language.
Some of them applies external frameworks for integration, others
are built on language extensions. Only a few solutions are based on
standard programming language features like macros or generative
language elements.

Not all of these solutions can be applied in an industrial envi-
ronment. External tools may introduce unwanted dependencies on
3rd party software. Language extensions require translators, pre-
compilers or the modification of the compiler. These are fragile so-
lutions when new language or compiler versions appear. The most
portable, manageable solution is based purely on standard language
features.

In this paper we introduce a DSL integration technique for the
C++ programming language. The solution is based on compile-
time parsing of the DSL code. L. Andersson described the con-
struction of a parser generator in Haskell [31]. We followed his
approach, but leveraging the well known connection between func-



tional programming languages and C++ template metaprogram-
ming [1, 2] we implemented the parser generator as a C++ tem-
plate metaprogram library. Thus, the full parsing phase is executed
when the host program is compiled. The library uses standard C++
language features only, thus our solution is highly portable.

Defining new DSLs is simple using our solution. Taking ad-
vantage of the declarative nature of C++ template metaprogram-
ming the formal syntax of the DSL can be directly expressed in
the source code. Thus, the grammatical rules of the DSL are pre-
sented explicitly with a minimal syntactical overhead in the source
code. The result of this method is a highly self-documenting and
maintainable C++ template metaprogram.

As a demonstration of the power of this approach, we discuss
a number of practical domain specific languages. As a non-trivial
example, we present the construction of a highly efficient and type-
safe version of printf.

The rest of the paper is organized as follows. In Section 2 we
overview C++ template metaprogramming. Current DSL embed-
ding technologies are discussed in Section 3 with their advantages
and shortages. We explain our template metaprogram based parser
in Section 4 with sufficient implementation details. In Section 5
we evaluate our solution with the help of non-trivial examples. Our
paper concludes in Section 6.

2. C++ Template Metaprogramming
Templates are key language elements of the C++ programming lan-
guage [3]. They are essential for capturing commonalities of ab-
stractions without performance penalties at runtime. The most no-
table example is the Standard Template Library [12] which is now
an unavoidable part of professional C++ programs. In 1994 Erwin
Unruh wrote a heavily templated program [22] in C++ which didn’t
compile, however, the error messages emitted by the compiler dis-
played a list of prime numbers. Unruh used C++ templates and the
template instantiation rules to write a program that is “executed” as
a side effect of compilation. It turned out that a cleverly designed
C++ code is able to utilize the type-system of the language to force
the compiler to execute a desired algorithm [25]. These compile-
time programs are called C++ Template Metaprograms and later
have been proved to be a Turing-complete sub language of C++
[5].

C++ template metaprogram actions are defined in the form of
template definitions and are “executed” when the compiler instan-
tiates these templates. Their instantiations can instruct the compiler
to execute other instantiations, since templates can refer to other
templates. This way we get an instantiation chain very similar to
a call stack of a runtime program. Recursive instantiations are not
only possible but regular in template metaprograms to model loops.
Conditional statements, bottoms of recursions, and compile-time
decisions are implemented using template specializations [1, 23].

The compile-time decisions can directly affect the compilation
itself. A static assert is capable of halting the compilation of a
program at the point of the error’s detection, thus we can avoid an
incorrect program to come into being. At the same time, we aspire
to create a static assert that contains some sensible error message,
thus it is easier for the programmer to find the bug. The simplest
way to execute these checks is using a macro defined in [11]. Static
asserts are widely used for type checking in C++ templates [2].
Integration of domain-specific languages requires these techniques
to detect invalid states in the domain space and to raise custom
errors.

Today programmers write metaprograms for various reasons,
like implementing expression templates [26], where we can replace
runtime computations with compile-time activities to enhance run-
time performance; static interface checking, which increases the
ability of the templates to verify that the template parameters meet

some requirements, i.e. they form constraints on template parame-
ters [13, 16]; active libraries [24], acting dynamically at compile-
time, making decisions and optimizations based on programming
contexts. Other applications involve embedded domain specific lan-
guages as the AraRarat system [8] for typed safe SQL interface and
boost::xpressive [36] for regular expressions.

3. DSL integration techniques
In this section we overview common patterns in technologies cur-
rently used for integration of domain-specific languages.

3.1 External frameworks
In the following we discuss a few notable solutions for language in-
tegration using external frameworks. The common feature of these
approaches is that they intent to use some language independent
solution. In most cases the source code written in a specific syntax
is transformed into a language-neutral internal representation and
different DSLs are integrated in this representation. The integrated
program can be generated in a desired syntax.

3.1.1 Stratego/XT
The Stratego/XT developed in TU Delft is one of the most promis-
ing program transformation systems using external toolsets to in-
tegrate DSLs. The Stratego/XT metaprogram system [39, 27] con-
tains the Stratego language describing the program transformations
and the XT tool set, which executes the transformations and pro-
vides a framework for constructing stand-alone program transfor-
mation systems.

Source code written in arbitrary syntax can be transformed
into Annotated Term Format (ATF), an internal representation
that bridges the differences between syntactical notations. Steps
of transformations are executed on the ATF before a pretty printer
generates source code in a required language from it. Parsing and
pretty printing is based on an external description, therefore the set
of available language syntaxes are extensible. Some languages, like
C++ and Java, are already supported.

The Stratego language is based on strategic term rewriting.
Transformation definitions have two parts: rewriting rules and
strategies. Rewriting rules describe basic transformation steps. Ap-
plications of these rules are controlled using strategies. Rewriting
rules can be defined in a language independent way, operating on
the internal representation. However, this form is often lengthy. A
subsystem called Metaborg exists to describe the rewriting rules in
the source language.

3.1.2 Intentional programming
Current software development often uses high level, domain-
specific notations in the design phase, but almost always ends up
implementing the program in some programming language. This
last step is not only costly and error-prone, but causes recoding the
software when some domain-specific content changes. The idea
behind intentional programming [18, 37] is to separate the domain
contents of the software from its implementation in a specific pro-
gramming language and automatically regenerate the software as
its domain contents change.

Intentional programming allows expressing a program using
heterogeneous syntax, i.e. the code can appear in the syntax of a
general purpose programming language while some of its parts can
be expressed in a domain notation when that is more expressive.
Lazy evaluation strategies avoid unnecessary parsing-unparsing
steps to improve efficiency.

Domain contents can be extended behind classical program-
ming idioms. Comments, version control information or even the
full documentation could be integrated into the program and can be
displayed on request.



3.2 Language extensions
Language extensions are attractive solutions for embedding domain-
specific languages. They keep most of the host language syntax and
therefore have zero impact on those parts of the code where DSLs
are not used. Keywords or even variables from the domain-specific
language can be used without any quotation or syntactical marker.

However, there are several problems when more then one do-
main language is used in the host language: keywords may collide,
domain syntax can be ambiguous, etc. Special parsing and context-
aware scanning algorithms required in which the scanner uses con-
textual information to disambiguate lexical syntax [28]. Van Wyk
and others have shown the applicability of the extension mecha-
nism.

Language extensions are fragile in many ways. They require ei-
ther the modification of the compiler or an extensive set of transla-
tors or pre-compilers. Although for some languages like Java exists
a set of techniques and frameworks to make language extension
less painful, other languages, especially C++, are very hard to ex-
tend when conformance to the existing language, stability, and ef-
ficiency of the generated code are all targeted.

3.2.1 Template Haskell
Template Haskell [41] is a non-standard extension to Haskell 98 in
GHC. It is a tool for metaprogramming in Haskell, code manipulat-
ing abstract syntax trees can be written in a Haskell-like syntax to
generate code. The similarity between the template code and stan-
dard Haskell code makes it easier for developers to get started with
this tool. It is an extension to the standard and is limited to GHC.

3.3 New languages designed for extension
Programming languages can be designed for embedding DSLs by
allowing the developers to specify custom syntax and semantic and
use them in the source code. These languages become host lan-
guages for a number of DSLs. Given that this is what these lan-
guages are mainly designed for, embedding DSLs into systems
written in these languages is straightforward. However, this ap-
proach doesn’t target the extension of existing and widely used
languages. When using them, a new language and development en-
vironment has to be adopted by the developers. Another issue with
this approach is that even though these languages are designed for
DSL embedding, the syntax of the language may still constrain the
syntax of the embedded languages to some extent.

3.3.1 Converge
Converge [21] is a general purpose programming language de-
signed for embedding DSLs. It is influenced by Python [42] and
Icon [43]. Developers can easily extend the language with compile
time metaprograms. It doesn’t aim for embedding DSLs into ex-
isting languages, it is a new language with good DSL integration
support.

3.3.2 Katahdin
Katahdin [44] is a programming language designed for using differ-
ent languages in the same code. Developers can define the syntax
and semantic of a new language and Katahdin can parse and exe-
cute code written in that language.

3.3.3 XMF
XMF [45] is a language designed to support Language Oriented
Programming, described on the website of XMF. It aims to be a
framework for a number of DSLs solving different parts of the
problem and tying them together. It’s a new language, but uses the
Java virtual machine. It can be easily integrated with Java code,
however, it’s integration with other languages is difficult.

3.4 Generative approach
Expression Templates is an advanced technique that C++ library
developers use to define embedded mini-languages that target spe-
cific problem domains. The technique has been used to create effi-
cient and easy-to-use libraries for linear algebra as well as to define
C++ parser generators with readable syntax. But developing such
libraries involves writing an inordinate amount of unreadable and
unmaintainable template code.

In the following we overview three application examples of
expression templates for implementing domain-specific language
integration.

3.4.1 AraRat
The AraRat system targets one of the most important domains: it
demonstrates the integration of a relational algebra based language
into C++ [8] making the generation of type-safe SQL queries and
effective POD types for storing query results possible.

The system works in two phases. In the first phase a little ex-
ternal tool is used to discover the database schema and to generate
a set of C++ types and operator overloads to reflect the schema
information. In the host language relational expressions are repre-
sented as C++ expressions using the overloaded operators. Tem-
plate metaprogram techniques are used to check the consistency of
relational operations and generating result sets in an efficient way.

Its idea is impressive, but the AraRat system has constraints. Its
domain is restricted to the domain of relational algebra, mainly for
type-safe selections. The domain language has to follow the syntax
of C++.

3.4.2 Boost::Xpressive
boost::xpressive is an advanced, object-oriented regular expression
template library for C++ [36]. Regular expressions can be written
as strings that are parsed at runtime or as expression templates that
are parsed at compile-time. Regular expressions can refer to each
other and to themselves recursively, making it possible to build
arbitrarily complicated grammars.

Regular expressions are a paragon of domain-specific lan-
guages. They are used for a very special purpose, text manipulation,
and have a specific, usually implementation-independent syntax.
Regular expressions are usually implemented as libraries. Classical
regular expression libraries, like boost::regex, are powerful and
flexible. Patterns are represented as strings which can be specified
at runtime. However, it means that syntax errors are not detected
until runtime. Additionally, regular expressions are ill-suited for
advanced text processing tasks, such as matching balanced, nested
tags.

boost::xpressive brings these two approaches seamlessly
together and occupies a unique niche in the world of C++ text pro-
cessing. Users can represent regular expressions as strings or can
use them as C++ expression templates. In this case regular expres-
sions can be statically bound, hard-coded and syntax-checked by
the compiler or dynamically bound and specified at runtime. These
regular expressions can refer to each other recursively, matching
patterns in strings that ordinary regular expressions cannot.

While boost::xpressive behaves similarly to our solution
integrating a domain-specific language at compile-time and per-
forming syntax checks on it, its purpose is limited to a pre-defined
domain: text manipulation.

3.4.3 Boost::Proto
The boost::proto library takes one further step forward from
xpressive in providing a framework for building Domain Specific
Embedded Languages in C++ [35]. It provides tools for construct-
ing, type-checking, transforming and executing domain-specific
languages expressible as expression templates. Proto provides data



structures for representing the expressions and a mechanism for
giving additional behaviors and members to them.

Expression trees are built from expressions of the domain-
specific languages using operator overloads. Utilities for defining
the grammar of the expressions and an extensible set of mechanism
for immediate execution and tree transformations are also provided.
The use of boost::proto for defining the primitives of a domain-
specific language radically simplifies the task of integrating DSLs.

The boost::proto library is one of the most general existing
solutions for embedding domain-specific languages into C++. Un-
fortunately, it has restrictions. As the expression tree is built up with
the help of operator overloads, the domain-specific language has to
follow valid C++ expression syntax, i.e. keywords or variables have
to be connected to overloaded C++ operators. This is a serious re-
striction when speaking about general purpose domain languages.
In return no quotations should be applied to identify domain lan-
guage code.

3.5 Embeded DSLs
Embedded domain specific languages extend an existing language
and make it capable of handling a new problem domain in an ef-
ficient way. The right abstraction is different for every problem
domain. One language can’t capture them all but different embed-
ded languages can provide different abstractions, thus they can pro-
vide the right abstraction for every problem domain [7]. Embedded
DSLs don’t require external tools or changes in the compiler or the
runtime environment. When the host language is available on mul-
tiple platforms, carefully designed embedded DSLs are portable as
well. The embedded language may be limited by the syntax and
semantics of the host language.

4. Our solution
Our solution is based on the parser introduced in [31]. The pa-
per describes a runtime Haskell parser generator library in detail.
We transformed the library to a C++ template metaprogramming
library using a structured approach, detailed below. The result is
a compile-time parser generator library for C++. In this section we
present the details of the translation. The library is available at [46].

4.1 Syntax for embedding source codes
The input of the parser is the text to parse, represented as a string.
In Haskell a string is a list of characters [14]. In C++ template
metaprogramming we cannot handle string literals, we will use
a list of characters as well [1]. For example, the string Hello
World! will be represented in a C++ template metaprogram as:

lit_c<char,
’H’,’e’,’l’,’l’,’o’,’ ’,’W’,’o’,’r’,’l’,’d’,’!’>

boost::mpl has a tool for string definition which simplifies the
declaration of compile-time strings [33]:

string<’Hell’, ’o Wo’, ’rld!’>

Support for user-defined literals has been proposed to be included
in the upcoming C++ standard, C++1x. This proposal contains a
solution for the conversion of a string literal to the instantiation of
a variadic template [40] function with the characters of the string as
template arguments. With the combination of this, decltype [40]
and the C++ pre-compiler the notation can be simplified to:

_S("Hello World!")

By using an external translator, such as a trivial Python script, this
C++1x behavior can be simulated. An implementation of this script
is part of the source tree of our library available at [46]. Using

this script we minimize the syntactical overhead while we use only
standard C++ language features.

We present how we implemented those features of Haskell
which are used by the library. We don’t describe every part of the
translation here, we focus only on the key elements.

4.2 Algebraic types
The Haskell parser described in [31] is based on algebraic data
types. Algebraic data types in Haskell have the following form:

data <name> [<type arguments>] =
<constructor name> <constructor arguments> |
<constructor name> <constructor arguments> |
...

We implement each constructor by a C++ template. The constructor
arguments are the template arguments. For example the constructor
Div Expr Expr is implemented as

template <class Expr1, class Expr2>
struct Div {};

We couldn’t express Haskell types in C++ template metaprograms,
the type of the template arguments is always class. Algebraic data
types and their arguments have no direct representation in C++ tem-
plate metaprogramming, only the constructors are implemented.

In Haskell the constructors of algebraic data types act as func-
tions to construct objects. We need to turn their C++ template
metaprogramming implementations into functions as well. We can
do it by turning them into nullary template metafunctions evaluat-
ing to themselves. For example the Div function could be enhanced
the following way:

template <class Expr1, class Expr2>
struct Div
{

typedef Div<Expr1, Expr2> type;
};

This template works with functions expecting a data-type and with
functions expecting a nullary template metafunction as well. It
behaves as expected in both situations.

As an example for translating algebraic data types we present
our translation of Haskell’s Maybe. In Haskell it’s

Maybe a = Nothing | Just a

In C++ template metaprogramming it’s

struct Nothing
{

typedef Nothing type;
};

template <class a>
struct Just
{

typedef Just<a> type;
};

4.3 Functions
Haskell builds on currying to represent functions, a function takes
exactly one argument. Functions taking multiple arguments are im-
plemented as functions taking 1 argument and returning other func-
tions. For example a function taking 3 arguments is implemented
as a function taking 1 argument and returning a function taking an-
other argument and returning a function taking a third argument
returning the value of the 3 argument function.



In our C++ template metaprogramming representation of the
Haskell functions we didn’t represent currying: we implemented
Haskell functions as functions taking multiple arguments. Haskell
functions have the form of

f :: <arg 1> -> ... -> <arg n> -> <result type>

which we implemented in C++ template metaprogramming with
template metafunctions or template metafunction classes depend-
ing on how we wanted to use them:

template <class arg1, class arg2, ..., class argn>
struct f
// ...

{};
struct f // alternative solution
{
template <class arg1, ..., class argn>
struct apply

// ...
{};

};

The result of the function is the value of the template metafunction
or metafunction class. Functions are first-class citizens in Haskell,
they can be passed around as data values. In C++ template metapro-
gramming we can do the same with template metafunction classes.
Thus, functions in the library that were arguments or values of other
functions we implemented as template metafunction classes, not as
simple template metafunctions. boost::mpl provides tools which
can transform template metafunctions into template metafunction
classes in cases we need to turn a template metafunction into a
first-class citizen.

4.4 Parsers
Parsers are functions with the following signature:

type Parser a = String -> Maybe (a, String)

A parser takes the input string as its argument and returns a parsed
object and the remaining part of the input when it accepts a prefix of
the input string. It returns Nothing when it rejects the input string.
Note that the second element of the tuple is always a postfix of the
input string.

A tuple with two elements can be implemented by a pair of
classes. A pair data structure exists in boost::mpl which we
can use. A parser is a function in the Haskell library, so it’s a
template metafunction in C++ template metaprogramming. Here
is the definition of one of the basic parsers in Haskell:

char :: Parser Char
char (c:cs) = Just (c, cs)
char [] = Nothing

and in C++ template metaprogramming:

struct one_char
{
template <class s>
apply :

eval_if<
typename empty<s>::type,
Nothing,
Just<build_pair<front<s>, pop_front<s> > >

>
{};

};

Note that in C++ we had to call it one char because char is
a reserved word. build pair is a helper metafunction taking
nullary metafunctions as arguments and building a pair structure
from them. We had to use eval if instead of pattern matching.
Even though C++ templates have excellent pattern matching sup-
port [1] when we’re constructing code from the building blocks
boost::mpl provides, we can’t use it. To be able to pass one char
to parser combinators, which are template metafunctions, we had
to implement it as a template metafunction class.

Some parsers have arguments. The Haskell library builds on
currying in Haskell: parsers taking arguments are functions with
multiple arguments and the input string is always the last argument.
By applying all arguments except the input string to these functions
we get a parser: a function taking an input string as an argument and
parsing it. For example return is a parser with an argument:

return :: a -> Parser a
return a cs = Just(a, cs)

Its C++ template metaprogramming implementation has to be a
metafunction returning a parser, which is a metafunction:

template <class a>
struct return_
{

struct type
{
template <class cs>
struct apply : Just<pair<a, cs> > {};

};
};

4.5 Parser combinators
Complex parsers are built by combining basic parsers. The Haskell
library uses parser combinators which are parsers taking other
parsers as arguments. For example the Haskell library defines a ?
operator which is an infix operator: its left argument is a parser, its
right argument is a predicate providing a boolean value for each
result of the parser. We implemented it with a metafunction taking
two metafunction classes, a parser and a predicate, as arguments
and returning a parser:

template <class m, class p>
struct accept_when
{

// This metafunction class is the value
// of the accept_when metafunction
struct type
{
template <class cs>
struct apply :

lazy_eval_if<
equal_to<

typename apply<m, cs>::type,
Nothing

>,
nothing,
lazy_eval_if<

apply<p, just_value<apply<m, cs> > >,
apply<m, cs>,
nothing

>
>

{};
};

};



Note that the application of an argument to a function in Haskell,
which is writing the function and the operand after each other,
can be implemented using the apply metafunction in template
metaprogramming.

This function can be used the same way it’s used in the Haskell
library. For example we can use it to implement the digit function:

template <class cs>
struct digit :
accept_when<one_char, isDigit>::type {};

isDigit’s C++ template metaprogramming implementation is
straightforward but lengthy, we’re not going to present it here.

4.6 Recursive functions
Recursive functions can be translated as well, template metafunc-
tions can call themselves. We present our implementation of iter
here as an example, other recursive functions can be translated sim-
ilarly. The Haskell implementation of it is

iter :: Parser a -> Parser [a]
iter m = m # iter m >-> cons ! return []

while our translated implementation is

struct iter
{
template <class m>
struct apply :

parser::one_of< // !
parser::transform< // >->

parser::sequence< // #
m,
boost::mpl::apply<parser::iter, m>

>,
parser::cons

>,
parser::return_<boost::mpl::list<> >

>
{};

};

Note that we combined the C++ template metaprogramming im-
plementations of the operators the Haskell implementation uses the
same way the Haskell code does it. In the example above we added
the original names of the operators as comments to the functions.

The whole Haskell library can be translated to C++ template
metaprograms following this approach, we don’t present every step
here. As a result we get the same functionality at compile-time in
C++ the Haskell library provides at runtime.

5. Evaluation
Embedded languages can be compiled as part of the C++ compi-
lation process using template metaprograms and used by the host
program. We have built a library for constructing these compile-
time parsers. To demonstrate the power of the library we present a
non-trivial DSL and its compile-time parser using our library.

5.1 Type-safe printf
Though the printf function of the standard C library is efficient
and easy to use, it’s not type-safe, hence mistakes of the program-
mer cause undefined behavior at runtime. Some compilers, such as
gcc, type check printf calls and emit warnings in case there is a
type mismatch between the format string and the parameter types
or the number of parameters are different than specified but this
method is not widely available. To overcome these problems C++

introduced streams as a replacement of printf, which are type-
safe but have significant runtime and some syntactical overhead.

In most cases the format string of printf is a static string
literal in which case its value is available at compile-time, thus the
compiler could do type-checking and spot misuses of the function.
boost::mpl [33] supports compile-time strings which could be
used to represent the format string.

Stroustrup presents [40] a type-safe variant of printf using
variadic template functions which are part of the upcoming stan-
dard, C++1x [20]. That implementation, originally presented in [9],
uses runtime format strings and transforms printf calls to write to
C++ streams at runtime. See the example:

printf("Hello %s!", "John");

The method presented in [9] does the following at runtime:

std::cout
<< ’H’ << ’e’ << ’l’ << ’l’
<< ’o’ << ’ ’ << "John" << ’!’;

His solution was primarily written to demonstrate the use of vari-
adic templates, that is why printing the format string is done char-
acter by character, making the process extremely slow. This method
can be optimized in the following, more efficient way:

std::cout << "Hello " << "John" << "!";

Our solution is a type-safe version of printf that avoids the run-
time overhead of streams by using the printf function of the C
library, but with the guarantee of type-safety. Type-safe printf
calls can be written the following way:

safe::printf<_S("Hello %s!")>("John");

Hello %s! is the format string and John is the argument for
%s. safe::printf has all the information needed to verify the
correctness of the type of the argument or arguments at compilation
time. At runtime it calls

printf("Hello %s!", "John");

The compile-time verification guarantees that there will be no prob-
lems with the number or type of the arguments. When the number
or type of the arguments are incorrect and would lead to runtime er-
rors, safe::printf emits compilation errors. The template meta-
function verifying the arguments has no runtime, only compile-
time overhead. The body of safe::printf consists of a call to
printf, which is likely to be in-lined, thus using safe::printf
has no runtime overhead compared to printf, it has the same run-
time performance.

We have measured the speed of these operations and of the nor-
mal printf used by our implementation. We printed the following
text and its std::cout equivalents:

printf("Test %d stuff\n", i);

The text was printed 100 000 times and the speed using the time
command on a Linux console was measured. The result of the
measurement is presented in Table 1. The printf function, which
is used by the type-safe implementation, is almost four times faster
than the example at [40] and more than two times faster than the
optimized version of the example.
The grammar of the format string is a complex domain specific
language and the validator metafunction has to parse it, thus im-
plementing a type-safe printf is difficult without a compile-time
parser.



Method used Time
std::cout for each character 0,573 s
normal std::cout 0,321 s
printf 0,152 s

Table 1. Elapsed time

5.2 Building the parser for the type-safe printf
The library is available on-line at [46]. The printf function is in
the mpllibs::printf namespace, but to simplify it’s usage we
assume that the following alias is defined:

namespace safe = mpllibs::printf;

First we need to write the safe::printf template functions users
of safe::printf can call. These template functions take the for-
mat string and the types of the arguments as template arguments,
the arguments themselves as runtime arguments. They build a list
describing the expected argument types based on the format string
and verify the types of the arguments safe::printf was called
with using this list. We can use BOOST STATIC ASSERT [11] to
break the compilation in case they don’t match. Since variadic tem-
plates will be introduced only in C++1x, and they are not widely
available yet, we have to create different template functions for dif-
ferent numbers of arguments. Here are a few examples:

template <class formatString, class T1>
int safePrintf(T1 t1_) {
BOOST_STATIC_ASSERT((ValidPrintf<

formatString, boost::mpl::list<T1>
>::value));
printf(

boost::mpl::c_str<
formatString>::type::value, t1_);

}
template <class formatString,class T1,class T2>
int safePrintf(T1 t1_, T2 t2_) {
BOOST_STATIC_ASSERT((ValidPrintf<

formatString, boost::mpl::list<T1, T2>
>::value));
printf(

boost::mpl::c_str<
formatString>::type::value, t1_, t2_);

}
// ...

These functions can be automatically generated by the boost pre-
processor library [34]. ValidPrintf is a template metafunction
taking a format string and a list of argument types as arguments and
evaluating to a boolean value describing the correctness of the ar-
gument list based on the format string. It generates a list describing
the expected argument types by parsing the format string and veri-
fies the list of actual types. The function evaluates to true when the
two lists match and false when they don’t. It can be implemented
the following way:

template <class F, class ArgTypes>
struct ValidPrintf :
MatchLists<

typename
BuildList< PrintfParser::apply<F> >::type,

boost::mpl::identity<ArgTypes>
> {};

PrintfParser is a metafunction implementing the parser that
builds the list of expected types by parsing the format string,

MatchLists implements the list matching. The expected type of a
parameter can be described by the following triple:

• A boolean value telling if there will be an extra preceding
integer parameter describing the display length.

• A boolean value telling if there will be an extra preceding
integer parameter describing the precision.

• A parameter describing the type of the argument.

The expected type of a parameter’s value has to be described using
placeholders, given that multiple types can be accepted in many
places. We can create placeholders the following way:

struct ExpectCharacter {};
struct ExpectString {};
struct ExpectDouble {};
struct ExpectUnsignedInteger {};
// ...

One of these placeholders can be the third element of the triple.
PrintfParser parses the format string and builds the list of these
triples. BuildList takes the list of triples and transforms it into
a list of expected types by replacing each tuple with a number
of expected types: an ExpectUnsignedInteger element for each
true value as the first and second elements of the triple followed
by the third element of the triple, the type of the argument itself.
We don’t present the implementation of this metafunction here due
to the lack of space. MatchLists matches this list against the list
of the types of the parameters safe::printf was called with. We
don’t present the implementation of this function here either. The
full implementation can be downloaded from [46]. We focus on the
implementation of PrintfParser to demonstrate how it can be
built using our parser generator library.

To build PrintfParser we have to define a grammar for
printf using our parser generator library. Our library provides
a build parser metafunction, which builds the parser from this
grammar:

typedef build_parser<S> PrintfParser;

S is the start symbol of the grammar. We show how this grammar
can be built using our library. The grammar we use is based on [38].

S ::= CHARS (PARAM CHARS)*
PARAM ::= ’%’ FLAG* PRECISION FORMAT
FORMAT ::= ’h’ FORMAT_HFLAG | ’l’ FORMAT_LFLAG

| ’L’ FORMAT_LLFLAG | FORMAT_NO_FLAG
FORMAT_LLFLAG ::= ’e’ | ’E’ | ’f’ | ’g’ | ’G’
FORMAT_LFLAG ::= ’c’ | ’d’ | ’i’ | ’o’ | ’s’

| ’u’ | ’x’ | ’X’
FORMAT_HFLAG ::= ’d’ | ’i’ | ’o’ | ’u’ | ’x’ | ’X’
FORMAT_NO_FLAG ::= ’c’ | ’d’ | ’i’ | ’e’ | ’E’

| ’f’ | ’g’ | ’G’ | ’o’
| ’s’ | ’u’ | ’x’ | ’X’
| ’p’ | ’n’ | ’%’

PRECISION ::= ’.’ WIDTH | NONE
WIDTH ::= INTEGER | ’*’ | NONE
INTEGER ::= DIGIT+
DIGIT ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’

| ’5’ | ’6’ | ’7’ | ’8’ | ’9’
FLAG ::= ’-’ | ’+’ | ’ ’ | ’#’ | ’0’
CHARS ::= (not ’%’)*
NONE ::= epsilon

CHARS represents non-interpreted characters, PARAM represents
one parameter to be substituted. Our parser has to skip all non-
interpreted characters, determine the type required by the PARAM
parts and build the list of these types.



The parser for CHARS can be built the following way:

struct Chars :
any<second_of<except<lit_c<’%’>, int>,
one_char> > {};

The except parser ensures that parsing stops at the first % character,
one char parses one character. second of throws away the result
of the except parser and keeps only the result of one char, which
is the parsed character. any repeats this parser as long as it can,
until the next % character or the end of the string is reached. The
result of this parsing will be the parsed string itself.

Note the similarities between the definition of CHARS in the
grammar and it’s implementation: except implements the not part
of the rule, lit c<’%’> implements ’%’ and any implements the
Kleene-star. The rest of the elements of Chars tells the library what
the result of parsing should be. We’ll present the implementation
of other rules from the grammar as well, we won’t mention these
mappings for the rest of them.

We’re done with parsing non-interpreted characters, we build a
parser for PARAM as well. The result of parsing a PARAM element will
be a triple described above. Using these two parsers we construct
the start symbol of the grammar:

struct S :
keep_second<Chars,

any< keep_first<Parameter, Chars> >
> {};

This throws away the result of parsing non-interpreted characters
and keeps only the result of parsing the parameters. any constructs
a list of the results, thus it builds the list of triples we need as the
result of parsing a format string. Parameter parses one parameter,
it implements PARAM. It can be implemented the following way:

struct Parameter :
keep_second<

lit_c<’%’>,
keep_second<
any<Flag>,
sequence< Width,
sequence<Precision, Format>

> > > {};

lit c parses one % character, Flag parses a FLAG element, Width
parses a WIDTH element, Precision parses a PRECISION element,
Format parses a FORMAT element. Flags don’t affect the type of
the parameter, we can safely throw the result of parsing them
away. Triples will be pairs of pairs, built by sequences. The result
of Width and Precision will be boolean values, the first two
elements of the triples, the result of Format will be a placeholder
for the expected type.

Width can be implemented the following way:

struct Integer : any1<digit> {};
struct Width :
one_of<

always<Integer, mpl::false_>,
always<lit_c<’*’>, mpl::true_>,
return_<mpl::false_>

> {};

Integer is a non-empty list of digits. always takes a parser as an
argument and when the parsers succeeds, it throws the result of the
parsing away and replaces it with the second argument, true or
false in this case. return doesn’t parse anything, but always
succeeds and the result of the parsing is the argument of return .

The result of Width is true when it parses a * character and
false otherwise.

The implementation of Precision reuses Width:

struct Precision :
one_of<
second_of<lit_c<’.’>, Width>,
return_<mpl::false_> > {};

All we have left is the implementation of Format. It has to accept
an optional flag and a character specifying the type of the parame-
ter. The set of acceptable parameter types varies based on the flag.
We need to parse the flag first and the parameter type afterwards.

struct Format :
one_of<
keep_second<lit_c<’h’>, Format_hFlag>,
keep_second<lit_c<’l’>, Format_lFlag>,
keep_second<lit_c<’L’>, Format_LFlag>,
Format_NoFlag > {};

The parsers beginning with Format handle the different set of ac-
ceptable parameter types based on the flag. Format parses the flag
first and uses the appropriate Format parser. The implementation
of the Format functions is simple, we present one of them here,
the rest of them can be implemented in a similar way.

struct Format_LFlag :
one_of<
always<lit_c<’e’>, ExpectLongDouble>,
always<lit_c<’E’>, ExpectLongDouble>,
always<lit_c<’f’>, ExpectLongDouble>,
always<lit_c<’g’>, ExpectLongDouble>,
always<lit_c<’G’>, ExpectLongDouble>,
return_<RejectAll> > {};

We use a special placeholder for expected types, RejectAll, when
none of the acceptable format specifiers can be found. This place-
holder will not match against any parameter type, thus the matching
algorithm will commit a compilation error and reject the malformed
format string.

The implementation of a type-safe printf is now complete, it
can deal with the entire syntax of printf format strings. We could
implement it following the grammar of printf. The non-terminal
elements of the grammar are represented by template classes. Se-
quence, selection and repetition constructs used in the grammar are
implemented by metafunctions provided by our parser generator li-
brary, thus the grammar itself can be easily reconstructed from this
implementation. Using our parser generator library we could eas-
ily implement a non-trivial grammar and we got a C++ template
metaprogram with self-documenting source code.

5.3 Measuring the type-safe printf
We measured the compilation and execution time of the type-safe
printf and compared it to streams, the type-safe formatting solu-
tion of the standard library. We did the following measurements:

• Formatting 1, 2, 3, 4 and 5 floating point numbers using one
printf call

• Formatting 1, 2, 3, 4 and 5 different argument types, such as
integer and floating point numbers, strings, etc. We were using
one printf call to format all of them.

• In real code there will be multiple printf calls. We measured
what happens when we have multiple printf calls in one com-
pilation unit by repeating the previous measurement, but using
multiple printf calls: instead of measuring with n different ar-
gument types, we made printf calls with 1, 2, ..., n arguments
one after each other.



We run the measurements on a Linux command line. The machine
we did the measurements on had an 1.6 GHz Atom processor
and 1 GB memory. We were using gcc 4.4.3 and we didn’t use
any optimization. To measure the execution time, we repeated the
formatting 100 000 times in a for loop. This loop didn’t affect
compilation time. We measured the execution time of using the
original printf to see if safe::printf has any overhead.

Number of Homogeneous Heterogeneous Multiple
arguments arguments arguments calls

0 3.27 3.27 3.27
1 8.93 8.93 8.93
2 9.58 9.93 10.73
3 10.30 11.06 15.12
4 11.36 12.60 24.33
5 12.65 14.27 40.79

Table 2. Compilation time of safe::printf in seconds

Nr. of args. stream safe::printf printf
0 0.00 0.00 0.00
1 0.32 0.03 0.03
2 0.57 0.05 0.05
3 0.85 0.08 0.08
4 1.45 0.08 0.08
5 1.44 0.08 0.08

Table 3. Execution time with homogeneous arguments in seconds

Nr. of args. stream safe::printf printf
0 0.00 0.00 0.00
1 0.32 0.03 0.03
2 0.34 0.03 0.03
3 0.34 0.03 0.03
4 0.35 0.03 0.03
5 0.41 0.04 0.03

Table 4. Execution time with heterogeneous arguments in seconds

Nr. of args. stream safe::printf printf
0 0.00 0.00 0.00
1 0.32 0.03 0.03

1..2 0.84 0.06 0.06
1..3 1.60 0.09 0.09
1..4 2.72 0.09 0.09
1..5 4.22 0.09 0.09

Table 5. Execution time with heterogeneous arguments and multi-
ple calls

As we can see in Table 2, type checking has a cost at compile-
time but the measurement of the execution times in Tables 3, 4
and 5 shows that it runs significantly faster than streams with the
same type-safety guarantees. We have also seen that our type-safe
printf runs as fast as the original one, it has no run-time overhead.

5.4 Alternation at compile-time
The type constructed as the result of parsing depends on the embed-
ded code. We can easily construct a parser that takes a number as
its input and returns the int or double type, depending on which
type of variable could store that specific number. Here is the parser:

typedef
parser::keep_second<
parser::any1<parser::digit>,
parser::if_<

parser::sequence<
parser::lit_c<’.’>,
parser::any<parser::digit>

>,
double,
int

>
> S;

typedef parser::build_parser<S> Num;

And here is how it can be used:

Num::apply<_S("13")>::type // int
Num::apply<_S("11.13")>::type // double

In the example above we made compile-time decisions based on
the parsing result of the embedded language. This scenario shows
the ability of host code adaption depending on the domain-specific
code.

6. Conclusion
Smooth integration of domain-specific languages into a general
purpose programming language is not an easy task. A domain
specific language is intended to express the domain knowledge in
the best possible way, thus its syntax may radically differ from
the host language. A general case of language integration therefore
could be solved only by applying a parser infrastructure. External
tools and frameworks exist for the problem but they introduce
unwanted dependency on third party tools. The best self-containing
solution should use only standard language features and should use
only a minimal set of external tools, if any other than the compiler
of the host language.

Our solution full-fills most of these requirements. We created a
C++ template metaprogram library with the meaningful translation
of a similar Haskell run-time tool, which implements a full-featured
parser infrastructure. Domain-specific language code is presented
for the parser as template arguments and evaluated during the
compilation of the host code. The result of the parsing process
is a set of C++ classes which could be used for further compile-
time decisions in the template metaprogramming environment. We
presented a number of examples to show the usability of our library.

The library uses only standard C++ language features, thus our
solution is highly portable. It has a minimal syntactical overhead
which can be eliminated by a trivial transformation on the source
code. This transformation later could be avoided as the next C++
standard will introduce user-defined custom literals supporting the
straightforward presentation of the embedded domain-specific lan-
guage syntax.

A large number of languages can be embedded into C++ source
code by using compile-time parsers. The embedded source code
can be a compile-time string parsed by a metaprogram as part of
the compilation process. We are currently implementing a compile
time parser for embedded SQL which can validates the SQL queries
and builds the corresponding C++ classes. This way we are plan-
ning to create “safe” SQL queries where query strings are guar-
anteed to be valid SQL queries. This solution can provide safety
against SQL injection as well.

We are also working on the full automation of the transforma-
tion process from Haskell to C++ template metaprograms. Thus,
the C++ template metaprogram community could leverage from the
large set of Haskell run-time code base at compile-time.



References
[1] D. Abrahams, A. Gurtovoy, C++ template metaprogramming,

Concepts, Tools, and Techniques from Boost and Beyond, Addison-
Wesley, Boston, 2004.

[2] A. Alexandrescu, Modern C++ Design: Generic Programming and
Design Patterns Applied, Addison-Wesley, 2001.

[3] ANSI/ISO C++ Committee, Programming Languages – C++,
ISO/IEC 14882:1998(E), American National Standards Institute,
1998.

[4] K. Czarnecki, U. W. Eisenecker, R. Glück, D. Vandevoorde, T.
Veldhuizen, Generative Programming and Active Libraries, Springer-
Verlag, 2000.

[5] K. Czarnecki, U. W. Eisenecker, Generative Programming: Methods,
Tools and Applications, Addison-Wesley, 2000.

[6] G. Dos Reis, B. Stroustrup, Specifying C++ concepts, Proceedings
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), 2006, pp. 295-308.

[7] Paul Hudak, Building domain-specific embedded languages, ACM
Computing Surveys (CSUR), Volume 28, Issue 4es (1996)

[8] Y. Gil, K. Lenz, Simple and Safe SQL queries with C++ templates, In:
Charles Consela and Julia L. Lawall (eds), Generative Programming
and Component Engineering, 6th International Conference, GPCE
2007, Salzburg, Austria, October 1-3, 2007, pp.13-24.

[9] Douglas Gregor, Jaakko Järvi, Variadic templates for C++, Sympo-
sium on Applied Computing, Proceedings of the 2007 ACM sympo-
sium on Applied computing, Seoul, Korea (2007), pp.1101-1108.

[10] D. Gregor, J. Järvi, J.G. Siek, G. Dos Reis, B. Stroustrup, A.
Lumsdaine, Concepts: Linguistic Support for Generic Programming
in C++, In Proceedings of the 2006 ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications
(OOPSLA’06), October 2006.

[11] B. Karlsson, Beyond the C++ Standard Library, An Introduction to
Boost, Addison-Wesley, 2005.

[12] D. R. Musser, A. A. Stepanov, Algorithm-oriented Generic Libraries,
Software-practice and experience 27(7), 1994, pp.623–642.

[13] B. McNamara, Y. Smaragdakis: Static interfaces in C++. In First
Workshop on C++ Template Metaprogramming, October 2000

[14] B. O’Sullivan, J. Goerzen, D. Stewart, Real World Haskell, O’Reilly,
2008. ISBN: 978-0-596-51498-3
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