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Abstract: Template metaprogramming is an emerging new direction oéige
tive programming: with clever definitions of templates we emforce the C++
compiler to execute algorithms at compilation time. Altgbuhe relationship be-
tween template metaprograms and functional programmiagelisknown, there
are no studies to reveal how substantial features of fumatiprogramming can
be implemented in the means of C++ template metaprogramthidmpaper we
overview the most essential elements of functional prognarg: lazy and ea-
ger evaluations, lazy data types, currying, fixpoint operatetc. and show their
possible implementations with metaprograms. For this geepve define and im-
plement a translator to map lambda expressions to C++ téenpilataprograms.
Using the tool lambda expressions embedded into C++ hogusge and ex-
pressed by their natural syntax are translated to native €bete. As current
C++ metaprograms are mostly written using the intricatéasynf templates, this
study is also intended as a further step to implement a materatandable and
maintainable functional style interface for C++ templatetaprograms.
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1.1 INTRODUCTION

In 1994 Erwin Unruh wrote a program in standard C++ which didompile, but
the error messages the compiler displayed contained & lstroe numbers. He
used C++ templates and the template instantiation rulesite vprogram that is
executed as a side effect of compilation.

Abrahams and Gurtovoy [1] defined the term template metéifumas a spe-
cial template class: the arguments of the metafunctiorn@eemplate parameters
of the class, the value of the function is a nested type ofdhmptate called ype.
For example:

tenpl ate <class T>
struct nakeConst {
typedef const T type;

H

The example defined a metafunction calleakeConst taking a class as an
argument. The result is another class which is a nested tyjee anetafunction.
In the example above the function can be called with ah argument in the
following way: makeConst <i nt >: : t ype.

Data (such as integral constants) can be expressed in tenmpédaprograms
as well. Templates can have integral constant argumentthangalue of a tem-
plate metafunction can be defined as a static constant. dear example of
addition:

tenplate <int a, int b>
struct Plus {
static const int value = a + b;

b

Having defined this the expressi®hus<6, 7>::val ue evaluates to the 13
constant (at compile time).

1.1.1 Connection between C++ template metaprogramming and functional
programming

Template metaprograms are functional programs executedmapile time via
template instantiation. It supports the most importantuiess of functional pro-
grams: higher order functions, lazy evaluation, pattertchiag, recursion.

Abrahams and Gurtovoy [1] defined metafunction classesglware classes
with a nested metafunction callegpl y. Higher order functions can be repre-
sented using metafunction classes: since a metafunctss i a class, it can be
the result (or an argument) of a metafunction. Here is an pi@of a metafunc-
tion class:
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struct MakeConst {
tenpl ate <class T>
struct apply {
typedef const T type;
b
1

Evaluation of metaprograms happens via instantiationroptates, and templates
are instantiated by need only [3] making lazy evaluationsgms. For example
thei f structure [1] can be implemented by a metafunction takingralition and
two classes as values. Here is an example:

tenpl ate <bool cond, class T, class F>
struct If {

typedef T type;

b

tenplate <class T, class F>
struct If<false, T, F>{
typedef F type;

};

In this example only one of andF is instantiated when the metafunction is
evaluated (unlest andF are defined explicitly somewhere else).

Template metafunctions support pattern matching: speatains (based on
the template arguments) of template classes can be defioedx&mple:

tenpl ate <class T>
struct renoveConst {
typedef T type;

b

tenpl ate <class T>

struct renoveConst<const T> {
typedef T type;

b

This metafunction removes constness of a type using spsatiah.

Recursive template metafunctions can be defined as wellbe@aclass is in
scope in it’s definition. Recursion can be stopped by pattatcthing. Here is an
example:

tenpl ate <unsigned int n>
struct factorial ({
static const unsigned int
value = n * factorial <n-1>::val ue;

b
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tenplate <>
struct factorial <0> {
static const unsigned int value = 1;

b

This metafunction calculates the factorial of a number;

1.1.2 Maintenance problemswith template metaprograms

We have seen what template metaprogramming is capabletdfhas drawbacks
as well. C++ wasn't designed to support template metaprogiag, this capa-
bility of the language was discovered later. Because of teimplate metapro-
gramming is not a simple and easy to use tool. The syntaxrigété and error
messages displayed by the C++ compilers are difficult to seatlunderstand.
Having tools supporting development of template metanogrcould let devel-
opers safely use them in production software.

We examine how functional languages could be used to writpk&e metapro-
gramsin, letting developers use a better syntax for wriimgy maintaining metapro-
grams. Since lambda expressions are capable of expressirfgractional pro-
gram we show how lambda expressions can be used to expresse@plate
metaprograms in. We wrote a translator which can translested lambda ex-
pressions into template metaprograms in C++ code.

1.2 FUNCTIONAL FEATURES

We use the definition of non-typed enriched lambda exprasdiom [21]. The
only character which we decided to change wasitisbaracter which we replaced
by a\ character.

<expression> ::=
<constant> | <vari abl e>
<expr essi on> <expressi on>
\ <variable> . <expression>
( <expression>)

Decimal numbers and built-in operators are valid constétpported operators
are:+, —, %, /, %, <, >, <=, >=, <>, =, $. (% is modulo and $ is the fixpoint
operator). We restrict the form of a general lambda abstmaetlowing only one
variable, i.e. the expressidrxy. E should be written in form of x. \ 'y. E. This
restriction doesn't affect expressiveness.

We have defined a conversion of these expressions to C++aempktapro-
grams. During the execution of those metaprograms the Cmpiter builds the
graph of the expression and reduces it lazily. Lambda exfmes can be embed-
ded into C++ code with the following syntax:

__lanbda <nanme> = <expressi on>;
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Our compiler compiles them into C++ classes (metafunctlasses [1]) imple-
menting the lambda expression. The names of the classeBearmines of the
lambda expressions indicating that names have to be valid i@&mes. Since
these expressions are translated into C++ classes theyecahdmy part of the
code where classes can be defined [3].

121 Lazy and eager evaluation

Our compiler supports lazy evaluation of lambda expressi@very (sub)expr-
ession is evaluated only when it’s value is needed. It makggementation of
infinite data structures (such as infinite lists) possiblagdt evaluation is sup-
ported by the classes implementing the lambda expressin@s-+ but are not
supported directly in the lambda expressions themselbesy. dre always evalu-
ated lazily.

1.2.2 Lazy datatypes

Since lambda expressions are capable of expressing laayygeds, they can be
represented in C++ template metaprograms using our compde example lazy
lists can be expressed:

__lanbda true = \x.\y. x;
__lanbda false = \x.\y. vy;

__lanbda pair = \x.\y.\z. z x vy;
__lanbda first = \x. x true;
__lanbda second = \x. x fal se;

__lanbda cons = \x.\y. pair false (pair x y);
__lanbda nil = pair true true;

__lanbda head \x. first (second x);
__lanbda tail \'x. second (second Xx);

as it is defined in [5], they are lambda expressions repriegglidts.

1.2.3 Currying

Currying is supported: when the number of elements appliedtnction symbol
is less than the number of elements required by the functiotbel the result is
a new function symbol. For example: we have an anonymougi@umequiring
two elements to be applied to it:x. \y. + x y. When only one element is
applied to this function the result is a new function reqmgrbne element to be
appliedtoit.(\x.\y. + x y) 5isequivalenttdy. + 5 vy.

The C++ template metaprogram equivalent of these lambdeessipns sup-
ports currying as well. Currying has to be used explicitiplyoone element can
be applied to the metaprogramming equivalent of a functiantame. Applying
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one element to the equivalent of a function requiring midtgdements being ap-
plied to it is evaluated to the equivalent of another functiequiring less (by one)
elements. Another element needs to be applied to that imafter that, etc. The
same thing happens in lambda expressions in a series ofafpiis, for example
inf 5 8.

1.24 Interoperability with native C++ metafunctions

Lambda expressions have C++ equivalents and they can berimepted natively
as well. Natively implemented lambda expressions can beindambda expres-
sions (as constants). For example:

struct NativelLanbdaExpression {
/1 native inplenentation...

}1
__lanbda f = \n. NativelLanbdaExpression 2 n;

It makes extension of the built-in operators possible antspH the expressions
can be implemented using other techniques.

Lambda expressions can be used by native C++ template rogtaprs as
well since lambda expressions are compiled into templateapnegrams. After
they are compiled into template metaprograms there is Herdifce between a
natively implemented lambda expression and a compiled treecompiled one
can be used as a natively implemented one. Lambda expressiorbe used as
built-in functions in other lambda expressions, for exaenpl

__lanbda add = \a.\b. + a b;
__lanbda f =\n. * n (add 6 7);

Lambda expressions can be used in their own definition siyiudj the creation
of recursive expressions:

__lanbda rec = \n. (< n 1) 13 (rec (- n 1));

The lambda definitions behave similarly to the definitionsadfet r ec block
in Peyton Jones’s book [21]. Here id @&t r ec block and it's equivalent in our
solution:

letrec

add = \a.\b. + ab

f =\n. » n (add 6 7)

rec =\n. (<n1) 13 (rec (- n 1))
in

(some expression....)
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__lanbda add \a.\b. + a b;

__lanbda f =\n. * n (add 6 7);

__lanbda rec = \n. (< n1 13 (rec (- n 1));

/1l some C++ code containing | ambda expression(s)...

=1

Due to the visibility rules of C++ [3] lambda expressions sisble after their
declaration. For example the following code wouldn’t colafiecausd is de-
fined aftera:

\n. b n;

__lanbda a n
\n. + 1 n;

__lanbda b

Our compiler supports forward declaration of lambda exgiogss by ensuring that
every lambda expression compiled to C++ will be implemeshetg ast r uct .
The previous example can be declared befoee

struct b;
__lanbda a = \n. b n;
__lanbda b =\n. + 1 n;

125 Using lambda expressionsfrom other lambda expressions

A lambda expression embedded in a C++ code gives a name tdbddeexpres-
sion:

__lanbda f =\n. * (+ n 3) 2;

This is translated into a template metafunction class délieking one argument

1.2.6 Fixpoint operation and recursion

The fixpoint operator can be expressed as a regular lambdassipn, our com-
piler can compile it into a C++ template metaprogram, but (fmre efficient
programs) our compiler provides it as a built-in operatorTBis is theY operator
from [6]: for everyHlambda expression:

$H=H($H

It can be used to implement recursion, but lambda expressi@encompile can
reference themselves as well:

__lanbda factorial =
\n. (=n0) 1 (* n (factorial (- n 1)));

Our compiler generates the following code from this example
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struct factorial

struct factorial __inplenentation
{
tenpl ate <cl ass n>
struct apply
{
t ypedef
| anbda: : Appl i cation<
| anbda: : Appl i cati on<
| anbda: : Application<
| anbda: : Appl i cati on<
| anbda: : Oper at or Equal s,
n
>1
| ambda: : Const ant <i nt, 0>
>1
| anbda: : Constant<int, 1>
>1
| anbda: : Appl i cati on<
| anbda: : Appli cation<
| ambda: : OperatorMul tiply,
n
>1
| anbda: : Appli cati on<
factorial,
| anbda: : Appl i cation<
| anbda: : Appl i cation<
| anbda: : Qper at or M nus,
n
>

| anbda: : Constant<int, 1>

struct factorial : factorial __inplenentation

{
typedef factorial__inplenmentation base;

H
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1.3 IMPLEMENTATION DETAILS

We define our C++ implementation of the elements of lambdassgions.

1.3.1 Constants

Constants are implemented by a class. There are two typemsfants: integral
constants and types. Types are implemented by themsetwesxdmple the type

i nt is implemented by nt . Integral constants are implemented by a wrapper
class, such as the wrappers frbmost : : mpl [1].

1.3.2 Lambda abstractions

Lambda abstractions are implemented by metafunctionetd4$ whose embed-
dedappl y metafunction takes exactly one argument. The name of thersrgt
is the name of the variable the lambda abstraction bounds.

For example here is a lambda expression and it's implementat

/1 The | anbda expression
__lanbda I = \x. vy;

/1 1t’s inplenmentation
struct | {

tenpl ate <cl ass x>

struct apply {
typedef y type;

b
};

1.3.3 Variables

Variables are implemented by their name. A name symbol flwedambda ex-

pression becomes a name symbol in C++. Binding of the namkesribda ab-

stractions is done by the C++ compiler. As we could see iténpievious exam-
ple the lambda expressignbecomeg ypedef y type in the C++ template

metaprogram. The example has a lambda abstraction bindinghis lambda

abstraction is represented by a template metafunctiongakie argument called
X. When this metafunction is instantiated theymbols in it's body (if there are
any) are replaced by the class the metafunction is instadtiaith.

1.3.4 Eagerly evaluated applications

Eager application of a lambda expression to a lambda alistnas implemented
by the evaluation of theppl y metafunction. The C++ compiler does tfe
conversion during the instantiation because the name dbdheded variable is
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the name of the argument of the nesggzbl y metafunction (and the variables
are implemented by their names).

The | lambda expression defined in the previous section can beateal
either in an eager or lazy way. To specify eager evaluativeuser should use
the following C++ construct:

typedef [|::apply<lI>::type ApplicationOIToltself;

We will discuss lazy evaluation in subsection 1.3.6.

1.3.5 Curryingin built-in functions

Built-in in functions (such as the arithmetical or logicglesators) have more
than one arguments. Their implementation has to supporyinoge They have

to be implemented as a lambda abstraction. For exampleiag@y element on
the plus operator has to evaluate to another lambda abstraapplying another
element on that has to evaluate to a constant (and the valtleasf to be the sum
of the arguments). It can be implemented easily using négpes and templates.
As an example here is the implementation of the plus operator

struct OperatorPlus {
tenpl ate <cl ass a>
struct apply {
struct type {
tenpl ate <cl ass b>
struct apply {
/1 ... native inplenmentation of addition,
/'l possibly by boost:: npl
s
I
H
}
We assume that every built-in function supports partialiation (to a lambda
abstraction).

1.3.6 Lazy application

Applications in lambda expressions are evaluated only vilneinvalue is needed,
they can'’t be translated into eager applications. We uséotlosving template to
implement lazy application:

tenpl ate <class left, class right>
struct Application {};

Using this template expressions for lazy evaluation candileds binary trees of
applications: the instances of tAppl i cat i on template represent the applica-
tion nodes of the tree, tHeef t andr i ght arguments represent the sub trees of
the application nodes.
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We define a metafunction implementing reduction of expogssio weak head
normal form [5]. Stand alone lambda abstractions, constamd built-in functions
are in weak head normal form. Lazy applications are nevereakwhead normal
form, since we assume that every built-in function supppégial evaluation.
These considerations simplify the reduction algorithm:

while (the top level elenent is a |lazy application)
reduce the left side of the top level elenent to
weak head normal form
eval uate the top | evel application

We implemented this in a metafunction calleelduce:

tenpl ate <class T> struct Reduce { typedef T type; };

tenpl ate <class left, class right>
struct Reduce< Application<left, right> > {
t ypedef
t ypenane Reduce<
t ypenane
Reduce<l eft>::type::tenpl ate
appl y<right>::type
>::type type;
b

The general case handles lambda expressions which ardyaineseak head nor-
mal form, there is a specialisation of the template for rétlytazy applications
in normal order reduction: it reduces the left sub-expmssif the application
to weak head normal form ypenanme Reduce<l| ef t >: : t ype) after which
the left side is in weak head normal form, so the next redexigsapplication:

t ypenane
Reduce<l eft>::type::tenplate apply<right>::type

Finally the resulting expression is reduced as well.

14 EVALUATION

We solved the same problem with a hand-written C++ Templagaptogram and
with embedded lambda expressions. The task was producisy & Wwarnings
containing the primes in an interval. We used a simple?Dgigorithm: for each
n number in the interval the program determined individualhether it's a prime
or not by testing whether numbgr&. . n/ 2] are dividers oh or not.

1.4.1 Codesze

We have compared the length of the code to write (debug anctaiaj by count-
ing the effective lines of code. Out native implementatias\84 lines long while
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the solution using embedded lambda expressions was onigelbng. It means
that using embedded lambda expressions reduces the I code - in our
experiment the difference was significant (lambda expoessivere less than half
as long as native template metaprograms).

142 Templatedepth

We have compared how deep template depth the two solutigugee The em-
bedded lambda expressions exceeded the (default) maxiempidte depth of
the GNU C++ compiler for inputs longer than 57 elements wttike native im-

plementation exceeded the maximum only for inputs longaen th09 elements.
As we can see the limit of the embedded lambda expressiopnsvés [(because
our lambda expression implementation uses currying).

1.4.3 Compilation time

We have measured compilation time of generated metapragasth compared
it with a native implementation (using the same algorithmidye run the tests
on a Linux PC with 1 GB memory and a 2.6 GHz Celeron CPU. We uked t
4.2.4 version of the GNU C++ compiler with default optionse Wsed thé i e
command to measure compilation time and usedier part of it's output.

Figure 1.1 shows the compilation times (the horizontal exike length of the
interval (the first element of the interval was always 2) \bdical axis shows the
seconds spent on compilation.
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FIGURE 1.1. Compilation time

144 Debugging

Our solution doesn’t make debugging metaprograms eaberiror messages
are about the C++ templates representing the lambda eiqgmessBut having
a translation of lambda expressions to template metapmgygives opportuni-
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ties of extending the translated code with information alibe original lambda
expression making error messages more descriptive fotajers.

15 RELATED WORK

151 FC++

FC++ is a C++ library providing runtime support for functarprogramming
[20]. Using the tools the library provides functional pragrs can be written in
C++ from which the expression graph is built and evaluatetuatime. They
don't require any external tool (such as a translator) thesy standard language
features only. The library focuses on runtime execution.

15.2 Boost metaprogramming library

Boost has a template metaprogramming library cafledst : : npl which im-
plements several data types and algorithms following theclof STL [11]. Our
solution is designed to be compatible with it (the lambdareggions produced
by our compiler are designed to be template metafunctiossektaking one ar-
gument).

Boost : : npl has lambda expression support: the library provides taols t
create lambda abstractions easily: placeholders @, etc.) are provided and
arguments of metafunctions can be replaced by them. Thé& odsvaluating a
metafunction with one (or more) placeholder argument isdi@tctly usable, a
metafunction called anbda generates a metafunction class from them. Using
these lambda abstractions partial function applicati@stme implemented, but
sincel anbda bounds every placeholder lambda abstractions with otimeldia
abstractions as their value can’t be defined. For exampldy.+xy can't be
expressed (and neither can be ¥hixpoint operator).

15.3 Boost lambdalibrary

Boost has a library for implementing lambda abstractionS-rt [29]. It's main

motivation is simplifying the creation of function objedts generic algorithms
(such as STL algorithms). With the library function object be built from
expressions (using placeholders). The lambda abstradbiaift using this library
can be used at runtime.

154 EClean

Our solution is not the first attempt to express template pretgams using a
functional language. A Clean to Template Metaprogram teaoishas been writ-
ten [22]. It uses a subset of Clean (EClean) as the sourcadgegvhich it creates
template metaprograms from.
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1.6 CONCLUSION AND FUTURE WORKS

Template metaprograms are difficult to write, debug and taain They can be
tought of as purely functional programs [15]. We examinetthdéy could be ex-
pressed in well known, easy to use functional languages.

Lambda expressions are well studied, easy to processigtesatapable of ex-
pressing everything higher level functional languages[6ariVe have examined
how lambda expressions could be used to write template muggsgms in and
provided a tool for compiling in-line lambda expressionwitemplate metapro-
grams. Our solution demonstrates that any functional laggysuch as Haskell)
can be compiled into template metaprograms.

We have seen that using lambda expressions simplify teeplataprograms,
make them easier to write and maintain. The C++ language wiadasigned for
template metaprograms, they have to contain unnecessatgctigal elements.
The use of lambda expressions eliminiates these unnegeysaax elements and
let the developer (or the reader of the code) focus on thetifumality of the
metaprogram. The use of higher level functional languagetdcsimplify codes
even further.
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