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Abstract: Template metaprogramming is an emerging new direction of genera-
tive programming: with clever definitions of templates we can enforce the C++
compiler to execute algorithms at compilation time. Although the relationship be-
tween template metaprograms and functional programming iswell-known, there
are no studies to reveal how substantial features of functional programming can
be implemented in the means of C++ template metaprograms. Inthis paper we
overview the most essential elements of functional programming: lazy and ea-
ger evaluations, lazy data types, currying, fixpoint operation, etc. and show their
possible implementations with metaprograms. For this purpose we define and im-
plement a translator to map lambda expressions to C++ template metaprograms.
Using the tool lambda expressions embedded into C++ host language and ex-
pressed by their natural syntax are translated to native C++code. As current
C++ metaprograms are mostly written using the intricate syntax of templates, this
study is also intended as a further step to implement a more understandable and
maintainable functional style interface for C++ template metaprograms.
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1.1 INTRODUCTION

In 1994 Erwin Unruh wrote a program in standard C++ which didn’t compile, but
the error messages the compiler displayed contained a list of prime numbers. He
used C++ templates and the template instantiation rules to write a program that is
executed as a side effect of compilation.

Abrahams and Gurtovoy [1] defined the term template metafunction as a spe-
cial template class: the arguments of the metafunction are the template parameters
of the class, the value of the function is a nested type of the template calledtype.
For example:

template <class T>
struct makeConst {

typedef const T type;
};

The example defined a metafunction calledmakeConst taking a class as an
argument. The result is another class which is a nested type of the metafunction.
In the example above the function can be called with anint argument in the
following way: makeConst<int>::type.

Data (such as integral constants) can be expressed in template metaprograms
as well. Templates can have integral constant arguments andthe value of a tem-
plate metafunction can be defined as a static constant. Here is an example of
addition:

template <int a, int b>
struct Plus {

static const int value = a + b;
};

Having defined this the expressionPlus<6, 7>::value evaluates to the 13
constant (at compile time).

1.1.1 Connection between C++ template metaprogramming and functional
programming

Template metaprograms are functional programs executed atcompile time via
template instantiation. It supports the most important features of functional pro-
grams: higher order functions, lazy evaluation, pattern matching, recursion.

Abrahams and Gurtovoy [1] defined metafunction classes, which are classes
with a nested metafunction calledapply. Higher order functions can be repre-
sented using metafunction classes: since a metafunction class is a class, it can be
the result (or an argument) of a metafunction. Here is an example of a metafunc-
tion class:
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struct MakeConst {
template <class T>
struct apply {

typedef const T type;
};

};

Evaluation of metaprograms happens via instantiation of templates, and templates
are instantiated by need only [3] making lazy evaluation possible. For example
theif structure [1] can be implemented by a metafunction taking a condition and
two classes as values. Here is an example:

template <bool cond, class T, class F>
struct If {

typedef T type;
};

template <class T, class F>
struct If<false, T, F> {

typedef F type;
};

In this example only one ofT andF is instantiated when the metafunction is
evaluated (unlessT andF are defined explicitly somewhere else).

Template metafunctions support pattern matching: specialisations (based on
the template arguments) of template classes can be defined. For example:

template <class T>
struct removeConst {

typedef T type;
};

template <class T>
struct removeConst<const T> {

typedef T type;
};

This metafunction removes constness of a type using specialisation.
Recursive template metafunctions can be defined as well because a class is in

scope in it’s definition. Recursion can be stopped by patternmatching. Here is an
example:

template <unsigned int n>
struct factorial {

static const unsigned int
value = n * factorial<n-1>::value;

};
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template <>
struct factorial <0> {

static const unsigned int value = 1;
};

This metafunction calculates the factorial of a number;

1.1.2 Maintenance problems with template metaprograms

We have seen what template metaprogramming is capable of, but it has drawbacks
as well. C++ wasn’t designed to support template metaprogramming, this capa-
bility of the language was discovered later. Because of this, template metapro-
gramming is not a simple and easy to use tool. The syntax is intricate and error
messages displayed by the C++ compilers are difficult to readand understand.
Having tools supporting development of template metaprograms could let devel-
opers safely use them in production software.

We examine how functional languages could be used to write template metapro-
grams in, letting developers use a better syntax for writingand maintaining metapro-
grams. Since lambda expressions are capable of expressing any functional pro-
gram we show how lambda expressions can be used to express C++template
metaprograms in. We wrote a translator which can translate nested lambda ex-
pressions into template metaprograms in C++ code.

1.2 FUNCTIONAL FEATURES

We use the definition of non-typed enriched lambda expressions from [21]. The
only character which we decided to change was theλ character which we replaced
by a\ character.

<expression> ::=
<constant> | <variable> |
<expression> <expression> |
\ <variable> . <expression> |
( <expression> )

Decimal numbers and built-in operators are valid constants. Supported operators
are:+, −, ∗, /, %,<, >, <=, >=, <>, =, $. (% is modulo and $ is the fixpoint
operator). We restrict the form of a general lambda abstraction allowing only one
variable, i.e. the expression\xy.E should be written in form of\x.\y.E. This
restriction doesn’t affect expressiveness.

We have defined a conversion of these expressions to C++ template metapro-
grams. During the execution of those metaprograms the C++ compiler builds the
graph of the expression and reduces it lazily. Lambda expressions can be embed-
ded into C++ code with the following syntax:

__lambda <name> = <expression>;
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Our compiler compiles them into C++ classes (metafunction classes [1]) imple-
menting the lambda expression. The names of the classes are the names of the
lambda expressions indicating that names have to be valid C++ names. Since
these expressions are translated into C++ classes they can be at any part of the
code where classes can be defined [3].

1.2.1 Lazy and eager evaluation

Our compiler supports lazy evaluation of lambda expressions: every (sub)expr-
ession is evaluated only when it’s value is needed. It makes implementation of
infinite data structures (such as infinite lists) possible. Eager evaluation is sup-
ported by the classes implementing the lambda expressions in C++ but are not
supported directly in the lambda expressions themselves: they are always evalu-
ated lazily.

1.2.2 Lazy data types

Since lambda expressions are capable of expressing lazy data types, they can be
represented in C++ template metaprograms using our compiler. For example lazy
lists can be expressed:

__lambda true = \x.\y. x;
__lambda false = \x.\y. y;

__lambda pair = \x.\y.\z. z x y;
__lambda first = \x. x true;
__lambda second = \x. x false;

__lambda cons = \x.\y. pair false (pair x y);
__lambda nil = pair true true;
__lambda head = \x. first (second x);
__lambda tail = \x. second (second x);

as it is defined in [5], they are lambda expressions representing lists.

1.2.3 Currying

Currying is supported: when the number of elements applied to a function symbol
is less than the number of elements required by the function symbol the result is
a new function symbol. For example: we have an anonymous function requiring
two elements to be applied to it:\x.\y. + x y. When only one element is
applied to this function the result is a new function requiring one element to be
applied to it.(\x.\y. + x y) 5 is equivalent to\y. + 5 y.

The C++ template metaprogram equivalent of these lambda expressions sup-
ports currying as well. Currying has to be used explicitly: only one element can
be applied to the metaprogramming equivalent of a function at a time. Applying
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one element to the equivalent of a function requiring multiple elements being ap-
plied to it is evaluated to the equivalent of another function requiring less (by one)
elements. Another element needs to be applied to that function after that, etc. The
same thing happens in lambda expressions in a series of applications, for example
in f 5 8.

1.2.4 Interoperability with native C++ metafunctions

Lambda expressions have C++ equivalents and they can be implemented natively
as well. Natively implemented lambda expressions can be used in lambda expres-
sions (as constants). For example:

struct NativeLambdaExpression {
// native implementation...

};

__lambda f = \n. NativeLambdaExpression 2 n;

It makes extension of the built-in operators possible and parts of the expressions
can be implemented using other techniques.

Lambda expressions can be used by native C++ template metaprograms as
well since lambda expressions are compiled into template metaprograms. After
they are compiled into template metaprograms there is no difference between a
natively implemented lambda expression and a compiled one:the compiled one
can be used as a natively implemented one. Lambda expressions can be used as
built-in functions in other lambda expressions, for example:

__lambda add = \a.\b. + a b;
__lambda f = \n. * n (add 6 7);

Lambda expressions can be used in their own definition simplifying the creation
of recursive expressions:

__lambda rec = \n. (< n 1) 13 (rec (- n 1));

The lambda definitions behave similarly to the definitions ofa letrec block
in Peyton Jones’s book [21]. Here is aletrec block and it’s equivalent in our
solution:

letrec
add = \a.\b. + a b
f = \n. * n (add 6 7)
rec = \n. (< n 1) 13 (rec (- n 1))

in
(some expression....)
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__lambda add = \a.\b. + a b;
__lambda f = \n. * n (add 6 7);
__lambda rec = \n. (< n 1) 13 (rec (- n 1));
// some C++ code containing lambda expression(s)...

Due to the visibility rules of C++ [3] lambda expressions arevisible after their
declaration. For example the following code wouldn’t compile becauseb is de-
fined aftera:

__lambda a = \n. b n;
__lambda b = \n. + 1 n;

Our compiler supports forward declaration of lambda expressions by ensuring that
every lambda expression compiled to C++ will be implemeneted as astruct.
The previous exampleb can be declared beforea:

struct b;
__lambda a = \n. b n;
__lambda b = \n. + 1 n;

1.2.5 Using lambda expressions from other lambda expressions

A lambda expression embedded in a C++ code gives a name to a lambda expres-
sion:

__lambda f = \n. * (+ n 3) 2;

This is translated into a template metafunction class calledf taking one argument

1.2.6 Fixpoint operation and recursion

The fixpoint operator can be expressed as a regular lambda expression, our com-
piler can compile it into a C++ template metaprogram, but (for more efficient
programs) our compiler provides it as a built-in operator: $. This is theY operator
from [6]: for everyH lambda expression:

$ H = H ($ H)

It can be used to implement recursion, but lambda expressions we compile can
reference themselves as well:

__lambda factorial =
\n. (= n 0) 1 (* n (factorial (- n 1)));

Our compiler generates the following code from this example:
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struct factorial;

struct factorial__implementation
{

template <class n>
struct apply
{
typedef

lambda::Application<
lambda::Application<
lambda::Application<

lambda::Application<
lambda::OperatorEquals,
n

>,
lambda::Constant<int, 0>

>,
lambda::Constant<int, 1>

>,
lambda::Application<
lambda::Application<

lambda::OperatorMultiply,
n

>,
lambda::Application<

factorial,
lambda::Application<
lambda::Application<
lambda::OperatorMinus,
n

>,
lambda::Constant<int, 1>

>
>

>
>
type;

};
};

struct factorial : factorial__implementation
{

typedef factorial__implementation base;
};
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1.3 IMPLEMENTATION DETAILS

We define our C++ implementation of the elements of lambda expressions.

1.3.1 Constants

Constants are implemented by a class. There are two types of constants: integral
constants and types. Types are implemented by themselves, for example the type
int is implemented byint. Integral constants are implemented by a wrapper
class, such as the wrappers fromboost::mpl [1].

1.3.2 Lambda abstractions

Lambda abstractions are implemented by metafunction classes [1] whose embed-
dedapply metafunction takes exactly one argument. The name of the argument
is the name of the variable the lambda abstraction bounds.

For example here is a lambda expression and it’s implementation:

// The lambda expression
__lambda I = \x. y;

// It’s implementation
struct I {

template <class x>
struct apply {
typedef y type;

};
};

1.3.3 Variables

Variables are implemented by their name. A name symbol from the lambda ex-
pression becomes a name symbol in C++. Binding of the names inlambda ab-
stractions is done by the C++ compiler. As we could see it in the previous exam-
ple the lambda expressiony becomestypedef y type in the C++ template
metaprogram. The example has a lambda abstraction bindingx. This lambda
abstraction is represented by a template metafunction taking one argument called
x. When this metafunction is instantiated thex symbols in it’s body (if there are
any) are replaced by the class the metafunction is instantiated with.

1.3.4 Eagerly evaluated applications

Eager application of a lambda expression to a lambda abstraction is implemented
by the evaluation of theapply metafunction. The C++ compiler does theβ
conversion during the instantiation because the name of thebounded variable is
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the name of the argument of the nestedapply metafunction (and the variables
are implemented by their names).

The I lambda expression defined in the previous section can be evaluated
either in an eager or lazy way. To specify eager evaluation, the user should use
the following C++ construct:

typedef I::apply<I>::type ApplicationOfIToItself;

We will discuss lazy evaluation in subsection 1.3.6.

1.3.5 Currying in built-in functions

Built-in in functions (such as the arithmetical or logical operators) have more
than one arguments. Their implementation has to support currying. They have
to be implemented as a lambda abstraction. For example applying an element on
the plus operator has to evaluate to another lambda abstraction, applying another
element on that has to evaluate to a constant (and the value ofit has to be the sum
of the arguments). It can be implemented easily using nestedtypes and templates.
As an example here is the implementation of the plus operator:

struct OperatorPlus {
template <class a>
struct apply {
struct type {

template <class b>
struct apply {
// ... native implementation of addition,
// possibly by boost::mpl

};
};

};
}

We assume that every built-in function supports partial evaluation (to a lambda
abstraction).

1.3.6 Lazy application

Applications in lambda expressions are evaluated only whentheir value is needed,
they can’t be translated into eager applications. We use thefollowing template to
implement lazy application:

template <class left, class right>
struct Application {};

Using this template expressions for lazy evaluation can be built as binary trees of
applications: the instances of theApplication template represent the applica-
tion nodes of the tree, theleft andright arguments represent the sub trees of
the application nodes.
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We define a metafunction implementing reduction of expressions to weak head
normal form [5]. Stand alone lambda abstractions, constants and built-in functions
are in weak head normal form. Lazy applications are never in weak head normal
form, since we assume that every built-in function supportspartial evaluation.
These considerations simplify the reduction algorithm:

while (the top level element is a lazy application)
reduce the left side of the top level element to
weak head normal form

evaluate the top level application

We implemented this in a metafunction calledReduce:

template <class T> struct Reduce { typedef T type; };

template <class left, class right>
struct Reduce< Application<left, right> > {

typedef
typename Reduce<

typename
Reduce<left>::type::template
apply<right>::type

>::type type;
};

The general case handles lambda expressions which are already in weak head nor-
mal form, there is a specialisation of the template for reducing lazy applications
in normal order reduction: it reduces the left sub-expression of the application
to weak head normal form (typename Reduce<left>::type) after which
the left side is in weak head normal form, so the next redex is this application:

typename
Reduce<left>::type::template apply<right>::type

Finally the resulting expression is reduced as well.

1.4 EVALUATION

We solved the same problem with a hand-written C++ Template Metaprogram and
with embedded lambda expressions. The task was producing a list of warnings
containing the primes in an interval. We used a simple O(n2) algorithm: for each
n number in the interval the program determined individuallywhether it’s a prime
or not by testing whether numbers[2..n/2] are dividers ofn or not.

1.4.1 Code size

We have compared the length of the code to write (debug and maintain) by count-
ing the effective lines of code. Out native implementation was 34 lines long while
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the solution using embedded lambda expressions was only 14 lines long. It means
that using embedded lambda expressions reduces the length of the code - in our
experiment the difference was significant (lambda expressions were less than half
as long as native template metaprograms).

1.4.2 Template depth

We have compared how deep template depth the two solutions require. The em-
bedded lambda expressions exceeded the (default) maximum template depth of
the GNU C++ compiler for inputs longer than 57 elements whilethe native im-
plementation exceeded the maximum only for inputs longer than 109 elements.
As we can see the limit of the embedded lambda expressions is lower (because
our lambda expression implementation uses currying).

1.4.3 Compilation time

We have measured compilation time of generated metaprograms and compared
it with a native implementation (using the same algorithm).We run the tests
on a Linux PC with 1 GB memory and a 2.6 GHz Celeron CPU. We used the
4.2.4 version of the GNU C++ compiler with default options. We used thetime
command to measure compilation time and used theuser part of it’s output.

Figure 1.1 shows the compilation times (the horizontal axisis the length of the
interval (the first element of the interval was always 2), thevertical axis shows the
seconds spent on compilation.

FIGURE 1.1. Compilation time

1.4.4 Debugging

Our solution doesn’t make debugging metaprograms easier, the error messages
are about the C++ templates representing the lambda expressions. But having
a translation of lambda expressions to template metaprograms gives opportuni-
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ties of extending the translated code with information about the original lambda
expression making error messages more descriptive for developers.

1.5 RELATED WORK

1.5.1 FC++

FC++ is a C++ library providing runtime support for functional programming
[20]. Using the tools the library provides functional programs can be written in
C++ from which the expression graph is built and evaluated atruntime. They
don’t require any external tool (such as a translator) they use standard language
features only. The library focuses on runtime execution.

1.5.2 Boost metaprogramming library

Boost has a template metaprogramming library calledboost::mpl which im-
plements several data types and algorithms following the logic of STL [11]. Our
solution is designed to be compatible with it (the lambda expressions produced
by our compiler are designed to be template metafunction classes taking one ar-
gument).

Boost::mpl has lambda expression support: the library provides tools to
create lambda abstractions easily: placeholders (1, 2, etc.) are provided and
arguments of metafunctions can be replaced by them. The result of evaluating a
metafunction with one (or more) placeholder argument is notdirectly usable, a
metafunction calledlambda generates a metafunction class from them. Using
these lambda abstractions partial function applications can be implemented, but
sincelambda bounds every placeholder lambda abstractions with other lambda
abstractions as their value can’t be defined. For exampleλx.λy.+xy can’t be
expressed (and neither can be theY fixpoint operator).

1.5.3 Boost lambda library

Boost has a library for implementing lambda abstractions inC++ [29]. It’s main
motivation is simplifying the creation of function objectsfor generic algorithms
(such as STL algorithms). With the library function objectscan be built from
expressions (using placeholders). The lambda abstractions built using this library
can be used at runtime.

1.5.4 EClean

Our solution is not the first attempt to express template metaprograms using a
functional language. A Clean to Template Metaprogram translator has been writ-
ten [22]. It uses a subset of Clean (EClean) as the source language which it creates
template metaprograms from.
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1.6 CONCLUSION AND FUTURE WORKS

Template metaprograms are difficult to write, debug and maintain. They can be
tought of as purely functional programs [15]. We examined ifthey could be ex-
pressed in well known, easy to use functional languages.

Lambda expressions are well studied, easy to process structures capable of ex-
pressing everything higher level functional languages can[6]. We have examined
how lambda expressions could be used to write template metaprograms in and
provided a tool for compiling in-line lambda expressions into template metapro-
grams. Our solution demonstrates that any functional language (such as Haskell)
can be compiled into template metaprograms.

We have seen that using lambda expressions simplify template metaprograms,
make them easier to write and maintain. The C++ language was not designed for
template metaprograms, they have to contain unnecessary syntactical elements.
The use of lambda expressions eliminiates these unnecessary syntax elements and
let the developer (or the reader of the code) focus on the functionality of the
metaprogram. The use of higher level functional languages could simplify codes
even further.
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