
Implementing Monads for C++ Template

Metaprograms

Ábel Sinkovics, Zoltán Porkoláb

Dept. of Programming Languages and Compilers
Faculty of Informatics, Eötvös Loránd University

Pázmány Péter sétány 1/C H-1117 Budapest, Hungary
E-mail: {abel|gsd}@elte.hu

Abstract

C++ template metaprogramming is used in various application areas, such as
expression templates, static interface checking, active libraries, etc. Its rec-
ognized similarities to pure functional programming languages – like Haskell
– make the adoption of advanced functional techniques possible. Such a tech-
nique is using monads, programming structures representing computations.
Using them actions implementing domain logic can be chained together and
decorated with custom code. C++ template metaprogramming could bene-
fit from adopting monads in situations like advanced error propagation and
parser construction. In this paper we present an approach for implement-
ing monads in C++ template metaprograms. Based on this approach we
have built a monadic framework for C++ template metaprogramming. As
real world examples we present a generic error propagation solution for C++
template metaprograms and a technique for building compile-time parser
generators. All solutions presented in this paper are implemented and avail-
able as an open source library.

Keywords: C++ template metaprogram, monad, exception handling,
monoid, typeclass
2010 MSC: 68N15, 68N18

1. INTRODUCTION

Templates are key elements of the C++ programming language [33], cap-
turing commonalities of abstractions without performance penalties at run-
time. In 1994 Erwin Unruh wrote a C++ program [34] which didn’t compile,

Preprint submitted to Nuclear Physics B May 3, 2013

however, the error messages emitted by the compiler displayed a list of prime
numbers. Unruh used C++ templates and the template instantiation rules
to write a program that is “executed” as a side effect of compilation. It
turned out that a cleverly designed C++ code is able to utilize the type-
system of the language and force the compiler to execute a desired algorithm
[38]. These compile-time programs are called C++ template metaprograms
and form a Turing-complete sub language of C++ [5].

Today programmers write metaprograms for various reasons, like imple-
menting expression templates [36], where runtime computations can be fine-
tuned with compile-time activities to enhance runtime performance; static
interface checking, which increases the ability of the compiler to check the
requirements against template parameters by specifying constraints on them
[15, 26]; active libraries [37], acting dynamically at compile-time, making
decisions and optimizations based on programming contexts. Other applica-
tions involve embedded domain specific languages as the AraRarat system
[6] for type-safe SQL interface, Boost.Xpressive [41] for regular expressions
or Metaparse [23] for parsing at compile-time.

Initially C++ template metaprograms were constructed in an ad-hoc way,
which led to serious maintenance problems. Krzysztof Czarnecki and Ulrich
Eisenecker introduced the idea of looking at the building blocks of template
metaprograms – template classes – as functions evaluated at compile-time [5].
The arguments of the functions are the template parameters of the classes,
the values of the functions are nested types of the template classes. The
execution of a metaprogram is the evaluation of a template metafunction.
That metafunction can call other template metafunctions – that is, trigger
the instantiation of other template classes. The instantiation of a template
class cannot change any global state in the compilation process and instan-
tiating the same template with the same arguments always gives the same
result, thus template metafunctions are pure functions.

One can look at template metaprogramming as a pure functional lan-
guage [5]. Based on this similarity, a number of useful techniques for func-
tional languages, such as Haskell [21], can be adopted in C++ template
metaprogramming.

In Haskell, a monad [21] is a programming structure representing some
form of a computation that can be used to chain a number of functions
together. A monad can decorate the functions that are chained together to
implement some general logic that is orthogonal to the chained functions.
An example of such orthogonal logic is error propagation in a sequence of

2

functions – when one of them fails and returns an error, the error should be
returned to the caller without evaluating the rest of the functions. Monads
have various use cases nowdays. A few examples:

• Input and output is implemented using a special monad, called the IO
monad [21] in Haskell.

• Monads can help the implementation of parser combinators. Parsers
can be combined in a monadic way and the monadic framework can
take care of a large amount of boilerplate code during this process.

• Monads can be used to simplify error propagation in complex code.
By using them, the error propagation logic can be separated from the
business logic. They can be used to replace exceptions in pure code.

• Monads can simplify the implementation of pure code operating on a
state. Different types of monads can handle mutable and immutable
states.

• Monads can simplify the implementation of pure code doing logging or
producing other type of output. A monad can take care of collecting
that output.

When we are following the object oriented programming paradigm, we
can abstract either the data a computation is working on or the computation
that works on a piece of data. To abstract the data a piece of code is working
on one can use the Composite design pattern [10]. When one uses that, a
computation doesn’t need to know the real type of the object it is working
on. To abstract the computation, one can use the Command design pattern
[10]. Using it, one can abstract pieces of a larger computation away. The
rest of the code can be implemented in a way that is not aware of what these
pieces are doing.

In functional programming monads are a tool for abstracting computa-
tion. Users of a monad combine different functions together using the oper-
ations provided by the monad. The code combining these pieces together is
generic, it is implemented without knowing what these pieces will be.

A monad operates on functions that are passed around as values tak-
ing advantage of the fact that functions are first class citizens in functional
programming. The Command design pattern uses inheritance and runtime

3

polymorphism to be able to pass small pieces of functionality around as val-
ues [21].

Given the similarities of Haskell and C++ template metaprogramming,
the idea of monads can be implemented in C++ template metaprogramming
as well. In this paper we present an approach for porting Haskell code to C++
template metaprogramming and how it can be used to implement monads.
Using this technique we port a number of monads from Haskell to template
metaprogramming.

The do syntax [21] improves the readability of monadic Haskell code. This
is a syntactic sugar for code using monads. We present how this syntactic
sugar can be implemented in C++ template metaprogramming to improve
the readability of template metaprograms.

We present two real world use cases of monads in template metapro-
gramming. One of them is an approach for implementing error propagation
in pure code and an embedded language for C++ template metaprogram-
ming that resembles the syntax of exception handling in runtime code. The
other example we present is a monadic extension of the compile-time parser
generator library we presented in an earlier paper [23]. The library was de-
signed in a monadic way, however it didn’t use any framework supporting
monads. We present how using one simplifies code using the library. All
solutions presented in this paper are implemented and available as an open
source library [44].

The rest of the paper is organized as follows. We present the C++ tem-
plate metaprogramming implementation of algebraic data types and type
classes in Section 2 and monads in Section 3. A number of well-known
Haskell monads and their C++ template metaprogramming implementations
are discussed in Section 4. We present how a syntactic sugar, the do notation
can be implemented in C++ template metaprogramming in Section 5. Two
real world examples are presented in Section 6. Related research results are
discussed in Section 7. Our paper concludes in Section 8.

2. PREREQUISITES

Haskell monads are implemented using algebraic data types and type-
classes. To be able to implement monads, we need a way of transforming
them to C++ template metaprogramming. This section presents these lan-
guage elements and the way they can be transformed.

4

2.1. ALGEBRAIC DATA TYPES

We use the approach presented in an earlier paper [23] for representing
Haskell’s algebraic data types in C++ template metaprogramming. Alge-
braic data types in Haskell have the following form:

data <name> [<type arguments>] =
<con s t ru c to r name> <con s t ru c to r arguments> |
<con s t ru c to r name> <con s t ru c to r arguments> |
. . .

We implement each constructor by a C++ template. The constructor argu-
ments are the template arguments. For example the constructor Div Expr

Expr is implemented as

template <class Expr1 , class Expr2> struct div
{ typedef div type ; /∗ Needed f o r l a z y e va l ua t i on ∗/ } ;

We couldn’t express Haskell types in C++ template metaprograms, the type
of the template arguments is always class. Algebraic data types and their ar-
guments have no direct representation in C++ template metaprogramming,
only the constructors are implemented.

2.2. TYPECLASSES

The Haskell language provides typeclasses [21] for implementing function
overloading. There is a known similarity between Haskell typeclasses and
C++ concepts [4], however, concepts have been removed from the new stan-
dard. We present a solution for implementing typeclasses in conformity with
the C++ standard.

A typeclass defines an interface for a type. It takes the type as argument
and declares a number of functions using that type in their signature. The
following example shows the syntax of creating a typeclass:

class EqualityComparable a where

equal : : a −> a −> Bool

notEqual : : a −> a −> Bool

This example defines a typeclass called EqualityComparable. Its argument
is called a and two functions are specified: equal and notEqual. Both of
them take two values of type a as arguments and return a boolean value.

Types can be instances of a typeclass. Every type has to be explicitly
made an instance of a typeclass by implementing the expected functions.

5

The following example shows the syntax of making a type an instance of a
typeclass:

instance EqualityComparable Int where

equal x y = x == y
notEqual x y = x /= y

This example uses the comparison operators for implementing the two func-
tions. Certain functions required by a typeclass can have default implemen-
tations. Instances can override this default, but every instance not overriding
it inherits the default version. The following example shows the syntax of
providing a default implementation for a function:

class EqualityComparable a where

equal : : a −> a −> Bool

notEqual : : a −> a −> Bool

notEqual x y = not (equal x y)

This example uses equal to implement notEqual.
Typeclasses can be implemented in C++ template metaprogramming

based on the idea of traits [20]. A trait is a template class with member
types and static member constants. This template class can be specialised
for different types as template arguments and define the nested types and
static member constants differently for every template argument. It is used
to encode extra information about types that can be consumed by template
metaprograms.

A typeclass can be implemented as a trait. The argument of the typeclass
is the template argument of the trait. The list of expected functions cannot be
explicitly encoded. The following example shows the EqualityComparable

typeclass implemented in template metaprogramming:

template <class A> struct equa l i ty comparab l e ;

This template class has no implementation. This ensures that when it is
used inappropriately, the compiler emits an error message at the moment of
misuse and the user doesn’t get a confusing error message at a later point in
the compilation process.

Boost.MPL [40] uses tags to implement template metafunction overload-
ing [1]. A tag is a class that is used as an identifier in template metapro-
gramming. Boost.MPL uses tags as dynamic type information. Our imple-
mentation of typeclasses expects tags as template arguments.

6

A tag can be made an instance of a typeclass by specialising the template
for that tag and implementing the expected functions as template meta-
function classes – classes with a nested metafunction called apply [1]. The
following example shows how to make the boxed integers of Boost.MPL in-
stances of our example typeclass.

template<> struct equa l i ty comparab l e<i n t e g r a l c t a g> {
struct equal {

template <class A, class B>
struct apply : boost : :mpl : : equa l t o<A, B> {} ;

} ;
struct not equa l {

template <class A, class B>
struct apply : boost : :mpl : : no t equa l t o<A, B> {} ;

} ;
} ;

This code specialises the equality comparable template class for the type
integral c tag and implements the two expected operations, equal and
not equal, as metafunction classes. These implementations use comparison
functions provided by Boost.MPL.

The trait implementing the typeclass can be used to call functions related
to a typeclass. Unfortunately the calling code has to specify the tag explic-
itly. The following example implements a function, self equal, using the
equality comparable typeclass in both languages:

−− Haske l l
s e l fEqua l : : EqualityComparable a => a −> Bool

s e l fEqua l x = equal x x

// Template metaprogramming
template <class X> struct s e l f e q u a l : apply<

typename equa l i ty comparab l e<
typename boost : :mpl : : tag<X>: : type>: : equal ,

X
> {} ;

The requirement, that the argument x has to be an instance of a typeclass
is encoded in a different way in the two languages. In Haskell it is encoded
in the type of the function by having an expectation on the type argument,

7

while in template metaprogramming it is encoded in the implementation of
the function by accessing an element of the trait.

Expected functions with default implementations can be implemented in
template metaprogramming as well by creating a second template class for
the typeclass containing the default implementations as metafunction classes.
Every instance of the typeclass has to instantiate this extra template class
and inherit publicly from the instance. Here is an example for the extra
template class and the updated instance:

template<class A> struct equa l i t y c ompa rab l e d e f au l t s {
struct not equa l {

template <class A, class B> struct apply :
boost : :mpl : : not <typename boost : :mpl : : apply<

typename equa l i ty comparab l e<A>: : equal , A, B
>: : type> {} ;

} ; } ;
template<> struct equa l i ty comparab l e<i n t e g r a l c t a g> :
e qua l i t y c ompa rab l e d e f au l t s<i n t e g r a l c t a g> {

// no t e qua l i s i n h e r i t e d
struct equal { /∗ Same as b e f o r e . . . ∗/ } ; } ;

The default implementation of not equal uses the equal method of the
equality comparable typeclass. Any instance can override this default im-
plementation by overriding the nested class. Using this approach to imple-
ment typeclasses in template metaprogramming has several advantages.

• Helps structuring the code by collecting the functions implementing
the same abstract concept – what the typeclass represents – together
in one class.

• Given the fact that typeclasses are always used explicitly, it helps the
compiler provide meaningful error messages, since the name of the type-
class is likely to appear in the error messages when a tag is not an
instance of the typeclass the code is trying to use.

This approach has several drawbacks as well.

• It doesn’t support specifying the list of expected functions. The author
of a typeclass can express it using comments or in the documentation,
but not in a way that the compiler understands.

8

• The compiler can not verify and enforce the existence and the expected
signature of the required functions. Error messages are generated the
first time a missing function is called.

In spite of the drawbacks, following this approach helps making template
metaprograms more structured.

3. MONAD IMPLEMENTATION

In Haskell a monad is implemented by a typeclass, called Monad. It takes
a type constructor as argument. The type constructor has to take one argu-
ment to produce a type. Instances of Monad are called monadic types, values
of those types are called monadic values. The typeclass requires the following
operations to be implemented:

class Monad m where

return : : a −> m a
f a i l : : String −> m a
(>>=) : : m a −> (a −> m b) −> m b
(>>) : : m a −> m b −> m b

a >> b = a >>= \ −> b
f a i l = error

Two operators are required, both of them taking two arguments:

• >>=, taking a monadic value and a function mapping a value of some
type to a monadic value. The operator builds a new monadic value.
This operator can decorate the function or decide not to evaluate it
at all. Since the first argument of this operator can be the result of
another call of this operator, it can be used to chain a number of func-
tions mapping values to monadic values together. This operator can
implement some general logic that is orthogonal to what the functions
that are chained together do.

• >>, taking two monadic values and building a new one. The typeclass
provides a default implementation for this function that calls the >>=

operator with a function that always returns the second argument of
>>.

As an addition, two functions are required:

9

• return, taking a value of some type and returning a monadic value.
The purpose of this function is to lift a value into the monad.

• fail, taking a string and returning a monadic value. The returned
value has to break a chain of functions built with the >>= operator.
This function has a default implementation that calls error, which
generates an exception [21]

As an example for monads we can think of a simple way of error handling.
A function returning type a can return a type Maybe a instead. A Maybe a

value can be either Just a, which means that there was no error or Nothing
which means that something went wrong. The definition of Maybe in Haskell
looks like the following:

data Maybe a = Just a | Nothing

An instance of monad can be defined for Maybe. The Maybe monad keeps
calling the functions in a chain as long as they succeed. Any error breaks the
chain. The expected operations can be defined the following way:

instance Monad Maybe where

return x = Just x

Nothing >>= = Nothing

(Just x) >>= f = f x

return wraps its argument to represent a successful result. The bind opera-
tion returns Nothing if the result of the previous operation failed and applies
the next operation otherwise. This was just one example for a monad. We
will present further examples later.

In C++ template metaprogramming we represent the monadic values as a
set of template metaprogramming values. Since template metaprogramming
is weakly typed, this set can be defined in an informal way – in a comment
or in the documentation. In Haskell the compiler can verify if a value is
monadic or not, while the C++ compiler can not do it for us in template
metaprogramming. On the other hand, this makes the definition of monadic
values more flexible – as we will see, there are sets of monadic values that
can be defined in template metaprogramming but not in Haskell. Monads
can be implemented using typeclasses requiring the following metafunctions:

• return , taking some metaprogramming value as argument and return-
ing a monadic value. This is the equivalent of return.

10

• bind, taking a monadic value and a metafunction class as arguments
and returning a monadic value. The metafunction class takes some
value and returns a monadic value. This is the equivalent of the >>=

operator.

• bind , taking two monadic values as arguments and returning a new
monadic value. This metafunction evaluates its arguments lazily [27],
thus its arguments can be nullary metafunctions returning a monadic
value. It can replace bind in cases where the metafunction class ignores
its argument. This function is implemented by the >> operator in
Haskell.

• fail, taking some value as argument and returning a monadic value.
Its purpose is reporting errors in monads. When it is used in a chain of
bind calls, the returned value should break the evaluation of the chain.
This function is called fail in Haskell as well.

Since operators can not be used in template metaprogramming, we had to
give the operations names. We create a typeclass called monad as the equiv-
alent of the Monad typeclass in Haskell:

template <class Tag> struct monad ;
// Requires :
// r e tu rn : : app ly <T >, f a i l : : app ly <T >

// bind : : app ly <T, F >, b ind : : app ly <T, V >

As >> and fail have default implementations in Haskell, we can provide a
default implementation for bind and fail in template metaprogramming
as well:

template <class T> struct monadic error {} ;

template <class Tag> struct monad defaults {
struct bind {

template <class A, class B> struct apply :
boost : :mpl : : apply wrap2<

typename monad<Tag>: : bind ,
A, boost : :mpl : : always>

{} ;
} ;

11

struct f a i l {
template <class T> struct apply :

monadic error<T>: : f a i l e d {} ;
} ;

} ;

bind ’s default implementation calls bind with a metafunction class that
always returns bind ’s second argument. In Haskell fail’s default imple-
mentation uses error, which is something we do not have in C++ template
metaprogramming. However, we can replace it with a code that breaks the
compilation process by accessing a non-existing nested type in a template
class. The name of the nested class is likely to appear in the error message
generated by the compiler, thus by giving this class a meaningful name we
can improve the quality of the error message a bit. The example above uses a
non-existing nested class called failed. Since we’re trying to access a nested
class in a template class instance, it doesn’t generate any error message un-
til it is instantiated. Every instance of monad has to publicly inherit from
monad defaults to get the default implementations.

To simplify using monads, we can create wrapper template metafunctions
for the functions expected by the monad. The tag of the monad has to be
the first argument of these metafunctions.

template <class Tag , class T> struct r e tu rn :
boost : :mpl : : apply<typename monad<Tag>: : r e turn ,T> {} ;

The above example shows how a helper function for return can be imple-
mented. The rest of the functions (bind, bind and fail) can be imple-
mented in a similar way.

Haskell has semantic expectations for monads [21] that are documented
but cannot be verified by the compiler. The C++ template metaprogram-
ming equivalent of these expectations are the following:

• left identity : bind<Tag, return <Tag, X>, F> is equivalent to
boost::mpl::apply<F, X>.

• right identity : bind<Tag,M,monad<Tag>::return > is equivalent to M.

• associativity : The expression bind<Tag, M, lambda<x, bind<Tag,

boost::mpl::apply<F, x>, G>>> is equivalent to bind<Tag, bind<

Tag,M,F>,G>. lambda is our lambda expression implementation [30].

12

Similarly to Haskell, we cannot verify these expectations. It is the responsi-
bility of the monad’s author to satisfy these expectations.

4. MONAD VARIATIONS

In this section we present how different types of monads available in
Haskell can be implemented in C++ template metaprogramming. The full
implementation of these monads is part of Mpllibs [44].

4.1. MAYBE

Maybe has the following definition in Haskell:

data Maybe a = Nothing | Just a

It can be used as a basic error handling mechanism: a function either returns
some result (Just a) or a special value representing error (Nothing). Maybe
is a monad instance, return wraps its argument with Just, fail returns
Nothing, bind implements error propagation logic: it stops evaluating the
chained functions when one of them returns Nothing.

The Maybe type can not be implemented as a type in template metapro-
gramming, only as a set of individual data-constructors. Template metapro-
gramming can not express the connection between them, we need to do that
in the documentation. Nothing can be implemented by an empty class:

struct nothing {} ;

Just can be implemented by a template class:

template <class A> struct j u s t {} ;

We need to create a trivial metafunction, is nothing, checking if a value is
nothing or not – we do not present it here. We need a new tag representing
the Maybe monad:

struct maybe {} ;

Having all these elements we can express that Maybe is an instance of the
monad typeclass:

template <> struct monad<maybe>: monad defaults<maybe> {
struct r e tu rn
{ template <class T> struct apply : j u s t<T> {} ; } ;

13

struct f a i l
{ template <class S> struct apply : nothing {} ; } ;

struct bind {
template <class A, class F> struct c a l l F :

boost : :mpl : : apply<F, typename ge t data<A>: : type>
{} ;

template <class A, class F> struct apply :
boost : :mpl : : i f <i s n o t h i n g<A> ,

boost : :mpl : : i d e n t i t y<A> , c a l l F<A,F>>: : type
{} ;

} ; } ;

return wraps its argument with just, bind checks if its first argument, the
result of the previous step in the chain is nothing. When it is, it returns this
value without calling the next step. Otherwise it unwraps the value from
just and passes it to the next step in the chain. fail returns nothing to
break the chain of binds.

This monad implements some error propagation logic. It can be used to
combine metafunctions using Maybe to report errors. The problem with this
solution is that the monadic functions can not return any detail about the
error.

4.2. EITHER

The Either monad can be used for error handling as well. In Haskell the
following type is defined:

data Either a b = Left a | Right b

When it is used for error handling, Left a represents an error, Right b rep-
resents a result. Since Left has an argument as well, functions using Either

for error reporting can report details describing what went wrong. Either

is a monad instance as well, bind implements error propagation logic. The
type constructors can be implemented as template classes in C++ template
metaprogramming:

template <class A> struct l e f t {} ;
template <class B> struct r i g h t {} ;

14

Similarly to Maybe, we need an is left metafunction. Its implementation is
trivial, we do not present it here. We need to create a new tag, either, for
the Either monad. We can make either an instance of monad:

template<> struct monad<e i t h e r>: monad defaults<e i t h e r>{
struct r e tu rn
{ template <class T> struct apply : r i g h t<T> {} ; } ;

struct f a i l
{ template <class S> struct apply : l e f t<S> {} ; } ;

struct bind {
template <class A, class F> struct c a l l F :

boost : :mpl : : apply<F, typename ge t data<A>: : type>
{} ;

template <class A, class F> struct apply :
boost : :mpl : : i f < i s l e f t<A> ,

boost : :mpl : : i d e n t i t y<A> , c a l l F<A, F>>: : type
{} ;

} ; } ;

return wraps its argument with right to make it a result, fail wraps its
argument with left to break the evaluation of the monad. bind propagates
the error, when its first argument is left. When its first argument is right,
it unwraps the value and calls the monadic function.

Using this monad a better error-handling logic can be implemented since
monadic functions can return information about what the problem was in
case of errors.

4.3. LIST

The list monad turns operations mapping elements to lists into operations
transforming lists. Monadic values are lists of some type. return creates
a list with one element. bind’s first argument is a list. It calls the monadic
function on all elements of this list and concatenates the resulting lists. Since
the List monad doesn’t deal with error handling, there is no reasonable way
of overriding fail. It can be implemented the following way:

15

struct j o i n l i s t s {
template <class State , class NewList> struct apply :

boost : :mpl : : i n s e r t r a n g e<State ,
typename boost : :mpl : : end<State>: : type , NewList>

{} ;
} ;

template <> struct monad< l i s t t a g> :
monad defaults< l i s t t a g> {
struct r e tu rn {

template<class T>
struct apply : boost : :mpl : : l i s t<T> {} ;

} ;
struct bind {

template <class A, class F>
struct apply : boost : :mpl : : f o l d<

typename boost : :mpl : : trans form<A, F>: : type ,
boost : :mpl : : l i s t<> , boost : :mpl : : j o i n l i s t s>

{} ;
} ;

} ;

The return operation builds a one element list from its argument. The
bind operation applies its second argument, the function on all elements of
the list, which is its first argument. This application is implemented using
the transform metafunction provided by Boost.MPL. The result of this is
a list of lists, which need to be concatenated. This happens by folding over
this list using a helper metafunction, join lists. This metafunction joins
its two arguments using boost::mpl::insert range. The list monad, which
we get by this implementation can be used to implement ambiguity in pure
code [11, 12].

4.4. READER

The reader monad combines functions operating on an immutable state.
Monadic values are higher order functions taking the state as argument and
returning some value. The monad itself doesn’t deal with the state – it
constructs functions operating on it. The result of a chain of binds is a
function that takes the state as its argument.

16

In C++ template metaprogramming higher order functions are imple-
mented using metafunction classes, thus in the template metaprogramming
Reader monad monadic values are metafunction classes. A tag, reader needs
to be created to make Reader an instance of monad:

template<> struct monad<r eader>: monad defaults<r eader>{
struct r e tu rn {

template <class T> struct apply
{ typedef boost : :mpl : : always<T> type ; } ;

} ;
struct bind {

template <class A, class F> struct impl {
template <class R> struct apply :

boost : :mpl : : apply<typename boost : :mpl : : apply<
F, typename boost : :mpl : : apply<A, R>: : type

>: : type , R> {} ;
} ;
template <class A, class F>
struct apply : impl<A, F> {} ;

} ;
} ;

return creates a constant function – regardless of the state it always returns
return ’s argument. The function created by bind takes a state as argument
and passes it to bind’s first argument. The resulting value is used to construct
a new state -> value function. The state is passed to this function to get
the final result.

In the reader monad, monadic functions construct functions operating on
the state based on the result of the previous function operating on the state.
Thus, the execution of higher order code – code building functions operating
on the state – is mixed with normal functions operating on the state.

4.5. STATE

The State monad maintains a state like the Reader monad, but the
monadic values are functions that can change the state: they are functions
taking a state as an argument and returning a pair: a new state and a result.

The C++ template metaprogramming implementation of this monad is
similar to the implementation of the Reader monad: higher order functions

17

are represented by metafunction classes, pairs are implemented using pairs
provided by Boost.MPL.

template<> struct monad<s t a t e>: monad defaults<s t a t e> {
struct r e tu rn {

template <class T> struct apply { struct type {
template <class S>
struct apply : boost : :mpl : : pa i r<T, S> {} ;

} ; } ;
} ;

struct bind {
template <class A, class F> struct impl {

template <class S> class apply :
boost : :mpl : : apply<

typename boost : :mpl : : apply<
F, typename a p p l y f i r s t : : f i r s t>: : type ,

typename

boost : :mpl : : apply<A, S>: : type : : second
> {} ;

} ;
template <class A, class F>
struct apply : impl<A, F> {} ;

} ;
} ;

return creates a function returning return ’s argument and not changing
the state. The function created by bind takes a state as argument and
passes it to bind’s first argument. The resulting value is used to construct
a new state -> (value, state) function. The new state is passed to this
function to get the final result.

Given that C++ template metaprogramming is a pure functional lan-
guage, there is no mutable global state. However, using the State monad
functions having to operate on a mutable global state can be implemented
by simulating a state using the monad in C++ template metaprograms. An
example use of it is building parsers in a monadic way, which we discuss in
detail in section 6.4.

18

4.6. WRITER

The Writer monad demonstrates the expressiveness of our typeclass im-
plementation and an extension to tags used by Boost.MPL. To be able to
implement the Writer monad, we need to implement monoids. In abstract
algebra an object is called a monoid [21] if it meets the following require-
ments:

• It has an associative binary operator. That is, an operator, *, that
satisfies the following equation: a * (b * c) == (a * b) * c.

• It has an identity value, e, that satisfies a * e == a and e * a == a

In Haskell, this concept is captured by the Monoid typeclass:

class Monoid a where

mempty : : a
mappend : : a −> a −> a
mconcat : : [a] −> a
mconcat = foldr mappend mempty

mappend implements the binary operation, mempty is the identity element.
mconcat is a function concatenating the elements of a list using the binary
operation. It has a default implementation that can be overridden by a
more efficient algorithm for types where it is possible. This typeclass can
be implemented in template metaprogramming using the approach we have
presented for implementing typeclasses. The full implementation can be
found in Mpllibs [44]. The monadic values of the Writer monad are pairs: a
value and a state. The states are expected to form a monoid [21], thus they
have an associative operation that can be used to merge a number of state
values. The Writer monad collects the list of states while executing a chain
of bind calls and reduces them into one value using the reduction function
of the monoid.

Creating a tag for the Writer monad is not as straight forward as it was
for other monads, since the Writer monad expects a monoid instance as
argument. The Haskell implementation expects the type of the state to be
an instance of the Monoid typeclass. We need to provide an extra argument
to the Writer monad: the tag of the monoid. It can be provided by making
the tag of the Writer monad a template class taking the tag of the monoid
as argument.

19

template <class Monoid> struct wr i t e r {} ;

writer can be an instance of the monad typeclass using partial specialisation
[35]:

template <class Monoid> struct monad<wr i t e r<Monoid>> :
monad defaults<wr i t e r<Monoid>> { /∗ . . . ∗/ } ;

It makes writer an instance of the monad typeclass independent of the
monoid the Writer monad uses. Using our typeclass implementation, the
functions expected by monad can be implemented in a generic way, without
needing to know which monoid is used:

template <class Monoid> struct monad<wr i t e r<Monoid>> :
monad defaults<wr i t e r<Monoid>> {
struct r e tu rn { template <class T> struct apply {

typedef boost : :mpl : : pa i r<
T, typename monoid<Monoid>: : empty> type ;

} ; } ;

struct bind{ template <class A, class F> struct apply{
typedef typename

boost : :mpl : : apply<F, typename A : : f i r s t>: : type FA;

typedef boost : :mpl : : pa i r<
typename FA : : f i r s t ,
typename boost : :mpl : : apply<

typename monoid<Monoid>: : append ,
typename A : : second , typename FA : : second

>: : type> type ;
} ; } ;

} ;

This code uses the monoid typeclass to refer to the monoid’s operations.
Since the Monoid argument refers to a tag of a monoid, the nested types
empty and append are expected to be defined in the monoid<Monoid> trait
instance.

Our typeclass implementation allowed us to implement the Writer monad
independently of the monoid used by the monad. We have encoded the tag
of the monoid in the tag of the Writer monad.

20

5. DO NOTATION

Haskell provides syntactic sugar for monads, called do notation [21]. In
Haskell, a do block is associated with a monad and contains a number of
monadic function calls and value bindings. Here is an example do block:

do

r <− may fa i l 1 13
may fa i l 2 r

This evaluates may fail1 13, binds r to its result and evaluates may fail2

r, thus it does the same as we did in our previous example but is easier to
read. When the code gets more complicated, this difference becomes more
significant. We propose the following solution for supporting do notation in
C++ template metaprogramming. A do block looks like the following:

do <monad tag>: : apply<
step1 ,
// . . .
stepn>

do is a template class, monad tag is the tag identifying the monad. This
has to be passed to the return and bind functions. do <monad tag> is a
metafunction class taking the steps of the do block as arguments. A step is
either a nullary metafunction returning a monadic value or a binding of an
expression to a name. A binding is expressed by the following structure:

s e t<name , s tep>

step is a nullary metafunction returning a monadic value, name is the name
of a class. The binding binds the result of step to this name. The bound
name can be used in the steps of the do block following the binding. Our
example using the may fail functions can be written the following way:

struct r ;
do <exc ep t i on tag>: : apply<

s e t<r , may fa i l 1<boost : :mpl : : i n t <13>> ,
may fa i l 2<r>>

This implementation uses set to bind the result of calling the may fail1

metafunction to a name, r. This result can be passed to may fail2 using
the name r.

21

5.1. Implementation of the do notation

We followed the approach presented in [21] to implement the desugaring
of do blocks. It uses a special version of bind that takes two monadic values
as arguments and returns a new monadic value. It can be used to implement
steps in the sequence of monadic function calls where functions ignore the
result of the previous function. We implemented this special bind as a tem-
plate metafunction called bind . According to [21] it can be implemented in
terms of bind:

template <class MonadTag , class A, class B>
struct bind :

bind<MonadTag , A, boost : :mpl : : always> {} ;

This implementation passes a special metafunction class always returning
B as the monadic function argument of bind. Our real implementation is
similar to this one, we do not present it here in detail. It can be found in
[44].

In our implementation do <monad tag>::apply<step1, ..., stepn> in-
stantiates do impl<monad tag, step1, ..., stepn>, which evaluates the
do block itself. This transition can be implemented using the Preprocessor
metaprogramming library of Boost [39]. Our implementation can be found
in [44]. do impl can be implemented the following way:

• do impl<monad tag, step> evaluates step.

• do impl<monad tag, step1, step2, ..., stepn> evaluates bind <

monad tag, step1, do impl<monad tag, step2, ..., stepn>.

• do impl<monad tag, set<name, exp>, step2, ..., stepn> evaluates
bind<monad tag, exp, lambda<name, do impl<step2, ..., stepn>

>>. We use our own lambda expression library which can be found in
[44]. lambda<name, nullary metafunction> takes a class, name, and
a nullary metafunction as arguments. lambda is a metafunction class
that takes a class as an argument. It constructs an updated version of
nullary metafunction, in which all occurrences of name are replaced
with the value of lambda’s argument. This updated nullary meta-
function is evaluated and lambda returns the result of this evaluation.
Further information on how it works can be found in [28].

Following these rules, the example:

22

struct r ;

do <exc ep t i on tag>: : apply<
s e t<r , may fa i l 1<boost : :mpl : : i n t <13>> ,
may fa i l 2<r>>

is transformed into

struct r ;

bind<
except ion tag ,
may fa i l 1<boost : :mpl : : i n t <13>> ,
lambda<r , may fa i l 2<r>>>

When a do block is evaluated, it is transformed to a nullary metafunction like
the example above and gets evaluated. The transformation happens when
the do block is evaluated, thus do blocks that are not evaluated are never
transformed.

5.2. Using return in do blocks

The standard tool for creating monadic values from non-monadic ones
is return . It takes the tag of the monad and the non-monadic value and
returns a monadic value. It can be used in do blocks the following way:

struct r ; struct s ;

do <monad tag>: : apply<
s e t<r , r e tu rn <monad tag , boost : :mpl : : i n t <11>>> ,
s e t<s , r e tu rn <monad tag , boost : :mpl : : i n t <13>>> ,
c a l l s ome f un c t i o n<r , s>>

The problem with this solution is that, every time we use return inside the
do block, we need to pass the tag of the monad to it, as well. It requires
specifying the tag of the monad at multiple places, which is more work to
be done for the developer and more possibilities to make mistakes, leading to
bugs that are difficult to find. We have implemented a solution that makes
the do block deduce the first argument of return . Developers can use
do return, a template class inside do blocks. Here is the previous example
using this new tool:

23

struct r ; struct s ;

do <monad tag>: : apply<
s e t<r , do re turn<boost : :mpl : : i n t <13>>> ,
s e t<s , do re turn<boost : :mpl : : i n t <14>>> ,
c a l l s ome f un c t i o n<r , s>>

do return<x> is substituted with return <monad tag, x> inside a do block.
It can be implemented in a similar way as let and lambda expressions. The
implementation has to take care of cases when do blocks are nested in each
other. This problem is similar to let expressions containing other let ex-
pressions and can be solved using the same approach. The details of im-
plementing let and lambda expressions are presented in [28]. With this, the
implementation of do blocks is complete.

As in Haskell, using do blocks makes the source code easier to read and
understand in C++ template metaprograms as well.

6. USE CASES OF MONADS

Using monads in C++ template metaprogramming has several benefits.
In this section we present two real world use cases of monads – how they can
be implemented and what value they add to template metaprogramming.

6.1. COMPILE-TIME EXCEPTION HANDLING

We have presented two monads, Maybe and Either, targeting error han-
dling in pure code. In this section we present a third monad, which we call
the Exception monad, that can handle errors in C++ template metapro-
grams. We present how this monad can be extended to simulate exception
handling in C++ template metaprograms.

Our Exception monad treats every value in C++ template metaprogram-
ming as a monadic value. Note that this wouldn’t be possible in Haskell, since
that language uses the type system to define the monadic values. We can
create a special data-constructor for representing errors:

template <class Deta i l> struct except ion {} ;

exception values contain details about the error, this is what the Detail ar-
gument represents. The exception monad follows the same logic as the Either

24

monad, treating exception values as left and other values as right values.
Thus, return is the identity function, bind implements error propagation.

The Exception monad stops the further execution of the chain of binds
in case of an exception and propagates the error to the caller, who can either
process this error information or propagate it further. This behaviour is the
same as exceptions have at runtime. [33]

We present compile-time exception handling using the min template meta-
function as an example: it takes two arguments and returns the smaller one.
It uses another metafunction, less, to decide which is the smaller argument.
min can be implemented (and is implemented in Boost.MPL) the following
way:

template <class A, class B>
struct min : i f <l e s s<A, B> , A, B> {} ;

When less returns an exception, the first argument of if is an exception
instead of a logical value. The body of min is a template metaprogramming
expression. A sub-expression of it, less<A, B>, calls another metafunction,
less. When a sub-expression of an expression returns an exception, the
exception propagation logic should stop the evaluation of the entire expres-
sion and make the exception the result of the expression (thus, propagate
the exception). In order to do this, we have to turn the above example into
monadic code:

struct t ;

template <class A, class B> struct min :
bind<except ion ,

l e s s<A, B> , lambda<t , i f <t , A, B>>> {} ;

lambda is our lambda-expression implementation presented in [29]. t is the
argument of the lambda-expression, if <t, A, B> is the body of it. The
code evaluates the original expression in two steps: first it evaluates the sub-
expression that may return an exception, then it evaluates the rest of the
expression. The two steps are connected by bind.

Turning every template-metaprogramming expression into monadic code
is a tedious and error prone process. It makes the code extremely difficult
to read and maintain. We present a way to implement a small embedded
language for C++ template metaprogramming that resembles runtime ex-
ception handling. This language allows the developer to use try and catch

25

blocks in template metaprograms. These blocks are automatically translated
into monadic code presented above. The embedded language we present can
be implemented using the C++ standard, it doesn’t require any additional
tools.

We introduce the compile-time try block, which is a template class taking
one argument: a nullary metafunction. The try block turns the nullary
metafunction into a monadic expression before evaluating it. Using it min

can be implemented the following way:

template <class A, class B>
struct min :

t r y < i f <l e s s<A,B> , A,B>> {} ;

This solution wraps the body of the original min implementation. try is a
template class taking a nullary metafunction as argument. It transforms this
nullary metafunction into a series of bind calls:

• When the nullary metafunction is a class that is not a template in-
stance, it remains as it is.

• When the nullary metafunction is an instance of a template class, it is
transformed into a series of bind calls. An instance of the f template
class with T1 ... Tn arguments, f<T1, ..., Tn>, is transformed into
the following:

struct t1 ; /∗ . . . ∗/ struct tn ;

bind<except ion , T1 , lambda<t1 ,
bind<except ion , T2 , lambda<t2 , /∗ . . . ∗/
bind<except ion , Tn, lambda<tn , f<t1 , /∗ . . . ∗/ , tn>>>

/∗ . . . ∗/ >>

>>

This transformation ensures that when a sub-expression of the nullary meta-
function throws an exception, the exception is not passed to the function
taking that value as an argument but is propagated out of the entire ex-
pression. Using these try blocks the exceptions can be propagated in the
chain of function calls, similarly to stack unwinding in runtime code. This
transformation is similar to the logic of desugaring do blocks in Haskell [21]

26

Instances of the try template provide a nested type called type, that is a
typedef of the result of the monadic calculation. Thus, try can be used as a
metafunction. As it is the case in runtime code, exceptions are either handled
at some point or they are propagated out of the entire metaprogram and
break the evaluation of it. In runtime code they can be handled using catch
blocks. Catch blocks can filter the exceptions by type and catch exceptions
of a certain type or its subtypes only. Another option is to catch every
exception regardless of its type. A try block is followed by any number –
including zero – of catch blocks. When any of the catch blocks handles the
exception, the execution of the program continues after the try block. When
none of the catch blocks catches the exception, it is propagated further.

When a metafunction needs to handle exceptions propagated out of an
expression, the metafunction has to check the result of that expression. The
following code calls min and handles any exceptions thrown by min:

template <class N> struct max zero : e v a l i f<
typename i s e x c e p t i o n<min<N, i n t <0>>>: : type ,
/∗ error hand l ing code goes here ∗/ , min<N, i n t <0>>

> {} ;

This code uses a metafunction, is exception to check if min returned an
exception or not. When it did, an error handling branch of an eval if is
called, otherwise the result of min is returned. When the error handling code
has to differentiate different types of exceptions, it needs a chain of nested
eval ifs to detect the type of the exception.

Our embedded language for exception handling can be extended to sup-
port the developers of template metaprograms. We introduce the idea of the
compile-time catch block, which is a template metafunction class taking one
argument: the error handling code as a nullary metafunction. The enclos-
ing class of the metafunction class is a template class taking two classes as
template arguments:

• A tag, which is used as a filter: the catch block catches an exception,
when the data of it – the value that was thrown – has the same tag. Our
embedded language has a special tag, catch any, that catches every
exception.

• A place holder class. In the error handling nullary metafunction ev-
ery occurrence of the place holder class is replaced by the data of the
exception that was thrown.

27

Here is an example catch block:

struct e ; // P laceho lde r c l a s s
struct r an g e e r r o r t a g ; // Tag : out−o f−range e x c ep t i on s

// Metafunct ion g e t t i n g the l a s t
// v a l i d e lement o f the range
template <class RangeError> struct get range boundary ;

ca t ch <r ange e r r o r t ag , e>
: : apply<get range boundary<e>>

The above example shows a catch block that returns the last valid element
of a range in case of an out of range exception. Catch blocks belong to try
blocks, thus catch blocks are implemented as nested template classes of try
blocks. Using them max zero can be implemented the following way:

struct compar i s on e r ro r tag ;

template <class N> struct max zero :
t r y <min<N, i n t <0>>>

: : template ca tch <compar i son er ro r tag , e>
: : template apply< /∗ handle comparison error ∗/ >

: : template ca tch <catch any , e>
: : template apply< /∗ handle o ther e r ro r s ∗/ >

{} ;

The catch blocks operate on the result of the try block: they catch it when
they can catch it according to the tag of the error. The evaluation logic of a
catch block is the following:

• When there was no exception or the catch block can not catch it ac-
cording to its tag, the catch block returns the result of the try block
and ignores the error handling nullary metafunction.

• When the catch block can catch it and no previous catch block has
caught it, the catch block evaluates the error handling nullary meta-
function.

• The result of a catch block contains a nested catch template to make
chaining catch blocks possible.

28

Using this logic compile-time catch blocks have the same logic as the runtime
ones: they check the exceptions in order and the first one that can handles it.
If a chain of catch blocks contains one that uses catch any as the filtering tag,
the rest of the catch blocks will never have the chance to catch an exception.

To make the exception handling embedded language complete we can give
the exception data-constructor a new name, throw . Using it, returning an
exception from a template metafunction is similar to throwing an exception
in runtime code.

In runtime C++ code functions that are not prepared to handle excep-
tions can be called from try blocks without any further syntactic elements.
When using monads, non-monadic operations need to be lifted [21] into the
monad. We have specified our exception handling monad in a way that every
value in template metaprogramming is a monadic value to avoid lifting when
using compile-time exceptions and make it more like exceptions in runtime
C++ code.

6.2. IMPLEMENTATION OF EXCEPTION HANDLING

The try template can be implemented in two phases. As the first phase
a do try template can be implemented as a special do block prepared for
exception handling. This is a do block of the Exception monad, but provides
the catch cases, thus it can be used the following way:

template <class A, class B> struct min :
do t ry<

s e t<t , l e s s<A, B>> ,
i f <t , A, B>

>

: : template ca tch <compar i son er ro r tag , e>
: : template apply< /∗ handle comparison error ∗/ >

: : template ca tch <catch any , e>
: : template apply< /∗ handle o ther e r ro r s ∗/ >

{} ;

The above code returns the result of the do block when it is not an excep-
tion and checks the catch cases otherwise. As the second phase the try

template can be implemented that takes an angly bracket expression as its
argument and turns it into a do try block.

A try block has to turn an angly bracket expression into a monadic
chain of function calls. In our min example, this angly bracket expression

29

is if <less<A, B>, A, B>. Since an angly bracket expression describes a
type, it is either a non-template type or an instance of a template class.
When it is a non-template type, we can not transform it further, thus it can
be turned into a one-step do try block:

template <class F> struct t r y : do t ry<F> {} ;

When it is an instance of a template class, we assume that all of the tem-
plate arguments are nullary metafunctions that need to be evaluated first.
We evaluate them one by one using different steps of the do try block, we
store their results using set elements in the do try block and we evaluate
the top-level template class as the final step of the do try block. In the
implementation we make use of partial specialisation of template classes and
template template arguments [35].

template <

template <class , class> class F,
class T1 , class T2>

struct t r y <F<T1 , T2>> :
do t ry<

s e t<t1 , T1> ,
s e t<t2 , T2> ,
F<t1 , t2>> {} ;

The above code shows how to prepare try for angly bracket expressions,
where the top-level template takes two arguments. For every metafunction
arity a different specialisation needs to be written. These specialisations can
be generated using the Boost.Preprocessor library [39], we do not present
the details of it here. We have shown how to implement the second phase,
turning try blocks into do try blocks.

To implement the first phase as well, we present our solution for extending
a do block for the Exception monad with catching exceptions. A do try -
catch construct can be modeled using a finite state machine [9] with two
states:

• was exception The result of the do block was an exception and this
exception has not been handled yet.

• skip further catches The result of the do block was not an exception
or it was an exception but has already been handled.

30

The initial state of the machine depends on the result of the do block. Both
states are end states, the machine can stop in any of them. A state is imple-
mented by a template class. State transitions are applications of the catch
nullary metafunctions. Thus, state transitions are implemented by instanti-
ating nested catch template classes of the results of catch metafunction
classes. State transitions are implemented by inheritance: the apply tem-
plate class inside catch inherits from the next state. The implementation
of skip further catches is the following:

template <class Result>
struct s k i p f u r t h e r c a t c h e s {

typedef Result type ;
template <class Tag , class Name> struct ca tch {

template <class Body>
struct apply : s k i p f u r t h e r c a t c h e s {} ;

} ; } ;

When there was no exception or after the exception has been handled, all
further exception handling blocks should be skipped. At the end of the
chain of catch applications the user of the do try block will need access
to the result, thus type is a typedef of the result. The implementation of
was exception:

template<class Result> struct l a z y s k i p f u r t h e r c a t c h e s :
s k i p f u r t h e r c a t c h e s<typename Result : : type> {} ;

template <class Exception> struct was except ion {
typedef Exception type ;
template <class ExceptionTag , class Name>
struct ca tch {

template <class Body>
struct apply : boost : :mpl : : i f <

boost : :mpl : : o r <

i s same<ExceptionTag , typename boost : :mpl : : tag<
typename ge t data<Exception>: : type>: : type> ,

i s same<ExceptionTag , catch any>> ,
l a z y s k i p f u r t h e r c a t c h e s<typename

l e t<Name, typename ge t data<Exception>: : type ,
Body>: : type> ,

was except ion>: : type {} ; } ; } ;

31

It checks if the tag of the exception and the expected tag are the same
or the expected tag is catch any. In both cases it evaluates the body of
the catch block and transitions to the skip further catches state. Other-
wise it remains in the was exception state. It uses a helper metafunction,
lazy skip further catches to avoid evaluation of the exception handling
code in those cases, when the tags do not match. do try can be implemented
using these states:

template <class step1 , . . . , class stepn>
struct do try :

boost : :mpl : : i f <

typename boost : : i s same<
except ion tag ,
typename boost : :mpl : : tag<

typename do <exception monad>
: : template apply<step1 , . . . , s tepn>: : type

>: : type
>: : type ,
was except ion<

typename do <exception monad>
: : template apply<step1 , . . . , s tepn>: : type

> ,
s k i p f u r t h e r c a t c h e s<

typename do <exception monad>
: : template apply<step1 , . . . , s tepn>: : type

>

>: : type {} ;

It evaluates the body of the do try block using a do block and starts
the state machine from one of its states depending on the result of the
do block. Support for multiple arguments can be implemented using the
Boost.Preprocessor library, the details of which are not presented here. The
full implementation can be found in [44].

6.3. MEASURING THE EXCEPTION HANDLING SOLUTION

We present the implementation of the min function with and without
using the try blocks we have presented. Here is the implementation of it
without using try blocks:

32

template <class A, class B> class min {
private :

template <class LessAB> struct impl :
boost : :mpl : : i f <typename LessAB : : type , A, B> {} ;

public :
typedef typename boost : :mpl : : e v a l i f<

typename i s e x c e p t i o n<l e s s<A, B>>: : type ,
l e s s<A, B> , impl<l e s s<A, B>>> type ;

} ;

The above code implements the logic of calculating the minimum of two
values and deals with error propagation at the same time, which makes it
difficult to follow. The same can be implemented using a try block:

template <class A, class B>
struct min : t r y <boost : :mpl : : i f <l e s s<A,B> , A,B>> {} ;

The above code implements the same metafunction as the previous one,
except that it uses an Exception monad to deal with error propagation and
the rest of the code can focus on the business logic – calculating the minimum
of two values in this case.

We have measured the cost of instrumenting template metaprograms
with exception propagation. We measured the compilation speed of tem-
plate metaprogramming expressions embedded and not embedded in a try
block. We were using the plus metafunction from Boost.MPL to construct
the expressions. We used plus<int <1>, int <N>> as the expression. We
calculated this expression a hundred times in one compilation by replacing N

with a value between 1 to 100. We have run the measurement several times
and we increased the complexity of the expression by adding further plus

elements:

p lus<i n t <1> , i n t <N>>
plus<i n t <1> , p lus<i n t <1> , i n t <N>>>
// . . .

We run the measurements on a Linux command line. The machine we did
the measurements on had an 1.6 GHz Atom processor and 1 GB memory.
We were using gcc 4.5.2 and we didn’t use any optimization. Figure 1 shows
the results. Complexity on the diagram means the number of plus elements
in the expression.

33

Figure 1: Comparison of compilation speed with and without exception handling

The results show that even though there is a significant difference be-
tween using and not using a try block, by increasing the complexity of the
instrumented expression the compilation time doesn’t grow faster by using
try blocks.

Using this approach adding proper error handling to template metapro-
grams is easy and developers not familiar with monads can also understand
it. An implementation of this approach is part of the Mpllibs [44] library
collection.

6.4. PARSER MONAD

In Domain-specific Language Integration with Compile-time Parser Gen-
erator Library [23] we present an approach for implementing parsers that
parse an embedded DSL script at C++ compilation time. Error messages,
classes or runtime code can be generated as a result of parsing. The Domain-
specific Language Integration paper uses parser combinators [3] to build
parsers. The approach presented there uses a monadic approach for han-
dling parsing errors, however it doesn’t use a framework supporting monads
in template metaprogramming. We show how a monadic framework, such as
the one presented in this paper can simplify parser construction.

34

The paper introduces the concept of a parser, which is a function taking
a compile-time string as input and returning either a special value, nothing,
or a pair of a result and the remaining string. We do not present parser
combinators here in detail, we assume that the reader is already familiar
with it. Here is an example grammar:

EXP : := NUMBER ’+’ NUMBER

To build a parser for it one has to build a parser for NUMBER, one for ’+’

and combine them in a way that they are applied on the input string in
order. Each sub-parser takes the yet unparsed suffix of the input string and
returns some result (eg. the parser for NUMBER returns the value of the parsed
number) and the unparsed suffix of the input.

A monadic framework helps combining functions into more complex func-
tions in a readable way. The fact that parser combinators are about combin-
ing parsers – which are functions – into more complex parsers suggests that
monads could make parser construction easier.

Parsers operate on the input string: a parser consumes a part of the
input, other parsers following it work on this updated input. For example to
parse an EXP we need to give the initial input string to the NUMBER parser to
parse the number on the left. It returns the parsed value and the unparsed
suffix of the input. This unparsed suffix needs to be passed to the parser
parsing ’+’ and so on. Without a monadic framework it is the job of the
developers combining parsers to pass this input string around. However, the
State monad can deal with this if used in a way that the input string is the
state.

Parsers need to handle errors as well: when a parser fails in a chain of
parsers, the chain needs to be stopped and the error needs to be propagated.
This error propagation logic can be handled by the Maybe or the Either
monad.

We have shown that there are two different monads making parser con-
struction easier. In this section we present a monad that provides these two
capabilities together. Using monad transformers [21] this monad could be
built from the State and the Maybe or the Either monad. Monad transform-
ers are out of scope for this paper.

A new monad, the Parser monad can be implemented using the approach
we present in this paper for the parsers:

35

• Monadic values are parsers, that is, functions.

• return constructs the return parser described in the paper. It con-
sumes no input and returns the argument of return as the parsing
result.

• bind constructs a parser that parses the input using bind’s first argu-
ment, passes the result to the second argument of bind to get a new
parser. It parses the remaining string using this new parser and returns
the result of it. When the first parser fails, the error is propagated.

Using this monad error propagation can be simplified in the implementation
of parsers and parser combinators. The Domain-specific Language Integra-
tion paper presents the accept when parser combinator that takes a parser,
M, and a predicate P. The combinator builds a new parser that parses the
input using M and accepts the result if and only if the P predicate returns
true for the result. When M fails or P returns false, the parser rejects the
input. It is implemented the following way:

template <class M, class P> struct accept when {
struct type {

template <class Cs> struct apply : l a z y e v a l i f<
equa l t o<typename apply<M, Cs>: : type , Nothing> ,
nothing , l a z y e v a l i f<

apply<P, j u s t v a l u e<apply<M, Cs>>> ,
apply<M, Cs> , nothing

>> {} ;
} ;

} ;

The above parser can be re-written using the Parser monad we have imple-
mented based on the technique presented in this paper.

struct r ;

template <class M, class P> struct accept when :
do <par s e r>: : apply<

s e t<r , M> ,
l a z y i f<apply<P, r> , do re turn<r> , f a i l>

> {} ;

36

Note that fail is a parser that fails to parse any input. This solution im-
plements the propagation of the failure using the Parser monad. Using the
monad, the implementation of accept when became shorter due to the re-
moval of error propagation logic and state passing.

We have added this monad to the Mpllibs library collection [44]. Note
that our implementation is slightly more complicated to be able to provide
more detailed information about the error. However, the additional com-
plexity can be hidden by the Parser monad, thus code constructing parsers
using this monad remains as simple as presented in this paper.

7. RELATED WORK

The connection between Haskell, C++ template metaprogramming and
using monads has been discussed several times.

• Bartosz Milewski talked about the connection between Haskell and
C++ template metaprogramming in his blog [17]. He presented the
similarities of the two languages. He explained monads [19] and that
they could be used in C++ [18]. He discussed the relationship between
monads and exception handling. He did not use monads to implement
exception handling in compile-time C++ code. His solution used func-
tor objects to implement the functions bind connects and he presented
the Reader monad as well. His approach focuses on using monads at
runtime, while our approach focuses on using them at compile-time.

• FC++ [16] is a library providing functional programming tools for C++
supporting monads. Each monad is represented by a C++ class, which
specifies the required operations, bind and unit (our return). It pro-
vides a do notation implementation, as well, based on C++ operator
overloading. The library provides tools for developing programs in the
functional style that are executed at runtime, while our solution focuses
on monads for calculations at compile time.

• Joaqúın M López Muñoz discussed using monads in template metapro-
grams in his blog [14] and presented a simple implementation. His
solution has many similarities with the solution presented in this pa-
per. He created metafunctions for bind and return. His solution is
based on overloading these metafunctions using pattern matching and
does not take tags into account.

37

While our bind implementation takes the tag of the monad as argu-
ment, his mbind operation determines the monad from its arguments,
which is closer to the way monads in Haskell work. However, due to
the lack of using tags, his solution cannot deal with different template
classes implementing the same data-structure.

To compare Muñoz’s approach to ours, we compare the implementa-
tion of the List monad using the two approaches. We have already
presented the implementation of the List monad using our approach in
Section 4.3. Given the fact that Muñoz’s approach is based on pattern
matching, to implement the List monad we need a list implementation
where we can do pattern matching. We can use the following:

struct empty ;
template <class Head , class Tai l> struct cons {} ;

empty represents the empty list, cons<Head, Tail> represents a list
with Head as its first element and Tail as the remaining list. Based on
this, we can implement the List monad’s operations:

template <class T> struct mreturn<empty , T>
{ typedef cons<T, empty> type ; } ;

template <class A, class B> struct l i s t app end ;
template <class B> struct l i s t app end<empty , B>
{ typedef B type ; } ;
template <class H, class T, class B>
struct l i s t app end<cons<H, T> , B> {

typedef

cons<H, typename l i s t app end<T, B>: : type> type ;
} ;

template <class F>
struct mbind<empty , F> { typedef empty type ; } ;

template <class H, class T, class F>
struct mbind<cons<H, T> , F> : l i s t app end<

typename boost : :mpl : : apply<F, H>: : type ,
typename mbind<T, F>: : type> {} ;

38

The above code implements the List monad for the list implementation
given above. Since Muñoz’s approach is based on pattern matching, the
List monad implementation one can provide is limited to using this (or
some other) list implementation. Using the monad implementation
approach presented in this paper, we could implement the List monad
in a way that is not tied to any actual list implementation. It is based
on the polymorphic list operations of Boost.MPL and tag dispatching,
thus it works with any list implementation.

We have compared how monads can be constructed using the two ap-
proaches. We haven’t compared how the monads can be used and how
well the two approaches can simplify the complex syntax of template
metaprogramming. Given that we have provided an implementation of
Haskell’s do syntax while there is no implementation of it for Muñoz’s
approach, there is no reasonable way to compare the two approaches.

• Norman Ramsey [24] used a monadic approach to avoid meaningless
error messages caused by earlier errors in a compilation process. His
approach focuses on the improvement of error reporting in compilers.
He implemented his approach in ML and used monads for implementing
error propagation.

• Mike Spivey [32] presents how built-in exception handling can be re-
placed by a monadic approach in functional languages. As Norman
Ramsey mentions it [24], this technique can be used in other languages,
including C++. We have presented a similar approach in this paper,
however Spivey’s approach is based on the Maybe monad while our
approach is based on the Either monad and can return error details as
well, not just the fact that an exception was thrown.

• Stuart Golodetz talks about the connection between functional pro-
gramming and C++ template metaprogramming [7]. He presents the
connection between Haskell and C++ template metaprograms by con-
verting Haskell lists and functions operating on them to C++ template
metaprograms. In the second part [8] he presents the implementation
of balanced trees in C++ template metaprogramming. He doesn’t talk
about monads.

• phaskell [43] and MetaFun [42] are translators converting Haskell-like
languages to C++ template metaprograms. They use a simple sub-

39

language of Haskell, which is enough for implementing simple func-
tions and data-structures, however they do not support typeclasses,
thus they can not be used to implement monads in C++ template
metaprogramming.

• Jean-Philippe Bernardy et al. present the connection between Haskell
type classes and C++ concepts [4]. Unfortunately C++ concepts are
not part of the new C++ standard and cannot be used to implement
type classes in standard C++.

• Ádám Sipos presents Meta<Fun> [31], which is a translator from a
Clean-like pure functional language to C++ template metaprograms.
The tool consists of an execution engine, a C++ template metapro-
gram library, and an external translator. The paper does not mention
monads.

• Graham Hutton and Erik Meijer introduce parser combinators and
monads by giving a tutorial on how to construct a monadic parser com-
binator library. [11, 12] The paper discusses the performance of parsers
built with parser combinators. Techniques improving the performance
of the generated parses are also presented. The paper presents different
monads (Maybe, List, State monads) and how they can be combined
in the resulting parser combinator library.

• Dan Popa presents a step-by-step process [22] on how to construct an
interpreter in Haskell using monads. He constructs the interpreter in
two stages. In the first stage he builds the back-end, which executes
the interpreted program. Monads are used for maintaining the state
and producing the output of the interpreter. In the second stage he
builds the front-end, which parses the source code of the program to
interpret using a monadic parser combinator library, Parselib.

• Tim Sheard at al. present a method for domain specific language con-
struction. [25] They cover the construction of such languages from the
domain analysis phase to the implementation. Monads play a signifi-
cant role in the process. The authors suggest designing with monads
to deal with side-effects and state. The other reason they suggest using
monads is to make the resulting code cleaner and more readable by
hiding a large amount of plumbing with the help of the monads. They
present their solution in MetaML.

40

8. CONCLUSION

Recognizing the similarities between Haskell and C++ template metapro-
gramming as pure functional languages, we have adopted Haskell monads in
metaprograms and implemented a framework supporting them as a library.
We have demonstrated how the library works by implementing several mon-
ads from Haskell to C++ template metaprogramming.

We have seen a major difference between the C++ template metapro-
gramming and the Haskell implementation of typeclasses that affects monads
as well: while in Haskell the compiler verifies that a type meets the require-
ments of a class when it is made an instance of the class, in C++ we do
not get this guarantee. In many situations the lack of such verifications is
a disadvantage, since errors related to that are delayed until the first time
someone tries to use the missing part of the typeclass. However, we have
seen that in some cases the lack of such verifications can be useful. We could
implement exception handling in C++ template metaprogramming in a way
that doesn’t fit into the Haskell type system – we have made every value a
monadic value.

We have shown two real world use cases. We have implemented a generic
error propagation solution for C++ template metaprograms using monads
and an embedded language for compile-time exception handling on top of
that. As another real world use case we have shown how the implementation
of a compile-time parser generator library can be simplified by using monads.

References

[1] D. Abrahams, A. Gurtovoy, C++ template metaprogramming, Con-
cepts, Tools, and Techniques from Boost and Beyond, Addison-Wesley,
Boston, 2004.

[2] A. Alexandrescu, Modern C++ Design: Generic Programming and De-
sign Patterns Applied, Addison-Wesley, 2001.

[3] Lennart Anderson, Parsing with Haskell, 2001,
http://www.cs.lth.se/eda120/assignment4/parser.pdf

[4] Jean-Philippe Bernardy and Patrik Jansson and Macin Zalewski and
Sibylle Schupp, Generic programming with c++ concepts and haskell

41

type classes: A comparison, In J. Funct. Program., Cambridge Univer-
sity Press, New York, NY, USA, volume 20, issue 3-4, pp. 271–302.
http://dx.doi.org/10.1017/S095679681000016X.

[5] K. Czarnecki, U. W. Eisenecker, Generative Programming: Methods,
Tools and Applications, Addison-Wesley, 2000.

[6] Y. Gil, K. Lenz, Simple and Safe SQL queries with C++ templates,
In: Charles Consela and Julia L. Lawall (eds), Generative Programming
and Component Engineering, 6th International Conference, GPCE 2007,
Salzburg, Austria, October 1-3, 2007, pp.13-24.

[7] Stuart Golodetz, Functional Programming Using C++ Templates (Part
1), Association of C and C++ Users, 2007,
http://www.accu.org/var/uploads/journals/overload81.pdf

[8] Stuart Golodetz, Functional Programming Using C++ Templates (Part
2), Association of C and C++ Users, 2007,
http://www.accu.org/var/uploads/journals/Overload82.pdf"

[9] J. E. Hopcroft, R. Motwani, J. Ullman, Introduction to Automata The-
ory, Languages, and Computation, Addison-Wesley, 1969.

[10] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns.
Addison-Wesley. 1995. ISBN 0-201-63361-2.

[11] Graham Hutton and Erik Meijer, Monadic Parser Combinators, Techni-
cal Report, Department of Computer Science, University of Nottingham,
NOTTCS-TR-96-4, 1996

[12] Graham Hutton and Erik Meijer, Monadic Parsing in Haskell, Journal
of Functional Programming, Cambridge University Press, 1998. Volume
8, pp. 437–444.

[13] Björn Karlsson, Beyond the C++ Standard Library: An Introduction
to Boost, Addison Wesley Professional, 2005.

[14] Joaqúın M López Muñoz, Monads in C++ template metaprogramming,
http://bannalia.blogspot.com/2008/06/monads-in-c-template

-metaprogramming.html

42

[15] B. McNamara, Y. Smaragdakis: Static interfaces in C++. In First Work-
shop on C++ Template Metaprogramming, October 2000

[16] Brian McNamara, Yannis Smaragdakis: Functional programming in
C++. Proceedings of the fifth ACM SIGPLAN international conference
on Functional programming, pp.118-129, 2000.

[17] Bartosz Milewski, Haskell and C++ template metaprogramming
http://bartoszmilewski.wordpress.com/2009/10/26/haskellc

-video-and-slides

[18] Bartosz Milewski, Monads for the Curious Programmer
http://bartoszmilewski.wordpress.com/2011/01/09/monads-for

-the-curious-programmer-part-1

[19] Bartosz Milewski, Monads in C++,
http://bartoszmilewski.wordpress.com/2011/01/09/monads-for

-the-curious-programmer-part-1/

[20] Nathan Myers, A new and useful template technique: ”traits”, C++
gems, SIGS Publications, Inc., New York, NY, USA, 1996, ISBN 1-
884842-37-2, pp. 451–457.

[21] B. O’Sullivan, J. Goerzen, D. Stewart, Real World Haskell, O’Reilly,
2008. ISBN: 978-0-596-51498-3

[22] Dan Popa, How to Build a Monadic Interpreter in One Day, In Stud.
Cercet. Stiint., Ser.Mat., Supplement Proceedings of CNMI 2007, Cam-
bridge University Press, Volume 17, pp. 173–192.

[23] Zoltán Porkoláb and Ábel Sinkovics, Domain-specific language integra-
tion with compile-time parser generator library, In Eelco Visser and
Jaakko Järvi, editors, Generative Programming And Component En-
gineering, Proceedings of the Ninth International Conference on Gen-
erative Programming and Component Engineering, GPCE 2010, Eind-
hoven, The Netherlands, ACM, October 10-13, 2010,

[24] Norman Ramsey, Eliminating Spurious Error Messages Using Excep-
tions, Polymorphism, and Higher-Order Functions, In Computer Jour-
nal, Volume 42, 1999.

43

[25] Sheard, Tim and Benaissa, Zine-el-abidine and Pasalic, Emir, DSL im-
plementation using staging and monads, In SIGPLAN Not., volume 35,
issue 1, New York, NY, USA, ACM, December 1999, pp. 81–94.

[26] J. Siek and A. Lumsdaine: Concept checking: Binding parametric poly-
morphism in C++, In First Workshop on C++ Template Metaprogram-
ming, October 2000

[27] Ábel Sinkovics, Functional Extensions to the Boost Metaprogram Li-
brary, In Electr. Notes Theor. Comput. Sci., 264(5), pp. 85–101, 2010.

[28] Ábel Sinkovics, Nested Lambda Expressions with Let Expressions in
C++ Template Metaprograms, In Electr. Notes Theor. Comput. Sci.,
279(3), PP. 27-40, 2011.

[29] Ábel Sinkovics, Functional extensions to the Boost Metaprogram Li-
brary, In Porkolab, Pataki (Eds) Proceedings of the 2nd Workshop of
Generative Technologies, WGT’10, Paphos, Cyprus. pp.56–66 (2010),
ISBN: 978-963-284-140-3

[30] Sinkovics, Ábel, Nested Lambda Expressions with Let Expressions
in C++ Template Metaprograms in (Eds) Zoltán Porkoláb, Norbert
Pataki: Proceedings of 3rd Workshop on Generative Technologies,
WGT’11, Saarbrücken, Germany, 2011, pp. 63–76, ISBN: 978-963-284-
188-5.

[31] Sipos, Á., Porkoláb, Z., Pataki, N., Zsók, V.: Meta<Fun> - Towards
a Functional-Style Interface for C++ Template Metaprograms, in Pro-
ceedings of 19th International Symposium of Implementation and Ap-
plication of Functional Languages (IFL 2007), pp. 489–502.

[32] Spivey, M., A functional theory of exceptions, In Sci. Comput. Pro-
gram., Elsevier North-Holland, Inc., Amsterdam, The Netherlands, The
Netherlands, 14(1), May, 1990, pp. 25–42

[33] Bjarne Stroustrup: The C++ Programming Language Special Edition.
Addison-Wesley (2000)

[34] E. Unruh, Prime number computation, ANSI X3J16-94-0075/ISO
WG21-462.

44

[35] D. Vandevoorde, N. M. Josuttis, C++ Templates: The Complete Guide,
Addison-Wesley, 2003.

[36] T. Veldhuizen, Expression Templates, C++ Report vol. 7, no. 5, 1995,
pp. 26-31.

[37] T. Veldhuizen, D. Gannon, Active libraries: Rethinking the roles of com-
pilers and libraries. In Proceedings of the SIAM Workshop on Object
Oriented Methods for Inter-operable Scientic and Engineering Comput-
ing (OO’98). SIAM Press, 1998 pp. 21–23

[38] T. Veldhuizen, Using C++ Template Metaprograms, C++ Report vol.
7, no. 4, 1995, pp. 36-43.

[39] Vesa Karvonen and Paul Mensonides, The Boost preprocessor library.
http://www.boost.org/doc/libs/1 47 0/libs/preprocessor/doc

[40] Aleksey Gurtovoy and David Abrahams, The boost metaprogramming
library.
http://www.boost.org/doc/libs/1 47 0/libs/mpl/doc/index.html

[41] Eric Niebler, The boost xpressive regular library.
http://www.boost.org/doc/libs/1 38 0/doc/html/xpressive.html

[42] Haskell to C++ Template metaprogramming translator,
http://gergo.erdi.hu/projects/metafun/

[43] Haskell to C++ Template metaprogramming translator,
http://code.google.com/p/phaskell/w/list

[44] Ábel Sinkovics, The source code of mpllibs
http://github.com/sabel83/mpllibs

45

