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Abstract. C++ template metaprogramming is an emerging direction of
generative programming: with proper template definitions we can enforce
the C++ compiler to execute algorithms at compilation time. Template
metaprograms have become essential part of today’s C++ programs
of industrial size; they provide code adoptions, various optimizations,
DSL embedding, etc. Besides the compilation time algorithms, template
metaprogram data-structures are particularly important. From simple
typelists to more advanced STL-like data types there are a variety of
such constructs. Interesting enough, until recently string, as one of the
most widely used data type of programming, has not been supported. Al-
though, boost::mpl::string is an advance in this area, it still lacks the
most fundamental string operations. In this paper, we analysed the pos-
sibilities of handling string objects at compilation time with a metastring
library. We created a C++ template metaprogram library that provides
the common string operations, like creating sub-strings, concatenation,
replace, and similar. To provide real-life use-cases we implemented two
applications on top of our Metastring library. One use case utilizes com-
pilation time inspection of input in the domain of pattern matching al-
gorithms, thus we are able to select the more optimal search method at
compilation time. The other use-case implements safePrint, a type-safe
version of printf – a widely investigated problem. We present both the
performance improvements and extended functionality we have achieved
in the applications of our Metastring library.

1 Introduction

Generative programming is an emerging programming paradigm. The C++ pro-
gramming language [22] supports the generative programming paradigm with
using the template facility. Templates are designed to shift the classes and algo-
rithms to a higher abstraction level without losing efficiency. They enable data
structures and algorithms to be parametrised by types, thus, the classes and al-
gorithms can be more general and flexible. It makes the source code shorter and
easier to read and maintain which improves the quality of the code. Templates
and template-based libraries – most notably the Standard Template Library
(STL) – is now an unavoidable part of professional C++ programs.
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C++ templates – as opposed to the Java and C# solution – work using the
instantiation mechanism. Instantiation happens when a template is referred to
with some concrete arguments. During instantiation the template parameters are
substituted with the concrete arguments and the generated code is compiled.

The instantiation mechanism has an – originally unintentional – side effect.
By defining clever template constructs we can enforce the C++ compiler to
execute algorithms at compilation time. To demonstrate this in 1994 Erwin Un-
ruh wrote a program which printed a list of prime numbers as part of error
messages [23]. Unruh used template definitions and template instantiation rules
to compute the primes at compilation time. This programming style is called
C++ template metaprogramming [26]. The template metaprogram itself “runs”
at compilation time. The output of this process is the generated C++ code –
in most cases not the pure source code, but its internal representation – which
is also checked by the compiler. The generated program can run as an ordi-
nary “run-time” program. Template metaprogramming has been proven to be a
Turing-complete sub-language of C++ [5].

Template metaprogramming is widely used today for several purposes, like
executing algorithms at compilation time to optimize or make safer run-time
algorithms and data structures. Expression templates were the first applications
[25] allowing C++ expressions to be evaluated lazily and eliminating the over-
head of object-oriented programming mainly in numerical computations.

Static interface checking increases the safety of the code, allowing checking at
compilation time whether template parameters meet the given requirements [19].
As the C++ programming language has no language support to describe explicit
requirements for certain template properties, only the template metaprogram
based library solutions [29] remain.

The classical compilation model of software development designs and imple-
ments sub-programs, then compiles them and runs the program. During the first
step the programmer makes decisions about implementation details: choosing al-
gorithms, setting parameters and constants. Using template metaprograms some
of these decisions can be delayed. Active libraries [24, 13] take effect at compi-
lation time, making decisions based on programming contexts. In contrast to
traditional libraries they are not passive collections of routines or objects, but
take an active role in generating code. Active libraries provide higher abstrac-
tions and can optimize those abstractions themselves.

Domain specific languages (DSLs) are dedicated to special problems. They
are often incorporated into some general purpose host language – many times
into C++. The Ararat system [9], boost::xpressive and boost::proto [38, 32] li-
braries are good examples to libraries for embedding DSLs.

In the last fifteen years lots of research activities focused on improving the
process of metaprogramming. Essential compilation time algorithms have been
identified and used to develop basic metaprogram libraries [1, 2]. Complex data
structures are also available for metaprograms. Recursive templates store infor-
mation in various forms, most frequently as lists or tree structures. The canonical



examples for sequential data structures are typelist [1] and the elements of the
boost::mpl library [30].

Strings are one of the most commonly used data types in programming.
Some programming languages provide strings as built-in data types, while others
support strings and their operations by their standard library. A number of
applications are based on string manipulation, like lexical analysers, pattern
matchers and serialization tools. These applications are widely used in most
areas of computer science. Numerous research activities and studies managed to
improve the efficiency of these algorithms, however these improvements focused
only on run time algorithm optimizations.

Sometimes, part of the input arguments of string manipulation algorithms
are known at compilation time. In these cases a template metaprogram is able to
customize the string algorithm to the corresponding input, making it safer and
more efficient. While using the Knuth-Morris-Pratt sub-string search algorithm
[4] we know the exact pattern we are searching in the text. Thus, we can generate
the next vector of the algorithm at compilation time. As an other example the
regular expression library boost:xpressive is able to check the syntax of the
matching pattern at compilation time to detect erroneous regular expressions.

As more and more complex applications of template metaprogramming have
appeared, it is surprising that for a long time strings were not supported for com-
pilation time programming. The first attempt, boost::mpl::string [34] has
been created recently, and still lacks a number of essential features like compare,
search and replace sub-strings. Therefore we extended boost::mpl::string to
create our own metastring library to provide a better support for string manip-
ulation in metaprograms. In this paper, we present the meta-algorithms of usual
string operations.

To illustrate the importance of the Metastring library, we demonstrate its
usage by detailed use cases. One of the examples is from the searching algorithm
domain. Knowing the pattern to search at compilation time, we are able to
choose various optimizations to improve our algorithm.

The other example is the implementation of the printf C function in a type-
safe way. Although the printf function of the C standard library has a compact
and practical syntax – that is why printf is so widely used even today – it is
not recommended to use it in C++, because it parses the formatting string at
run time, thus, it is not type-safe. At the same time, in most cases the formatter
string is already known at compilation time. Hence, it is possible to generate
a formatter string specific printf using metaprograms, so that the compiler is
able to check the type of the parameters, making the code safer. We show that
our type-safe printf performs better than the type-safe stream operations from
the standard C++ library.

The paper is organized as follows. In Section 2 we give a short description of
the template metaprogramming techniques. Section 3 introduces our Metastring
library. In Section 4 we discuss our pattern matching improvements as applica-
tions of the metastring construct. In Section 5 we present the type-safe printf.



We give an overview on related and future works in Section 6, and we summarize
our results in Section 7.

2 Template Metaprograms

The template facility of C++ allows writing algorithms and data structures
parametrized by types. This abstraction is useful for designing general algorithms
like finding an element in a list. The operations of lists of integers, characters or
even user defined classes are essentially the same. The only difference between
them is the stored type. With templates we can parametrize these list operations
by type, thus, we need to write the abstract algorithm only once. The compiler
will generate the integer, double, character or user defined class version of the
list from it. See the example below:

template<typename T>
struct list
{
void insert(const T& t);
// ...

};

int main()
{
list<int> l; //instantiation for int
list<double> d; //instantiation for double
l.insert(42); d.insert(3.14); // usage

}

The list type has one template argument T. This refers to the parameter type,
whose objects will be contained in the list. To use this list we need to generate
an instance and assign a specific type to it. That method is called instantiation.
During this process the compiler replaces the abstract type T with a specific
type and compiles this newly generated code. The instantiation can be invoked
either explicitly by the programmer but in most cases it is done implicitly by
the compiler when the new list is first referred to.

The template mechanism of C++ enables the definition of partial and full
specializations. Let us suppose that we would like to create a more space efficient
type-specific implementation of the list template for bool type. We may define
the following specialization:

template<>
struct list<bool>
{
//type-specific implementation

};



Nevertheless, the implementation of the specialized version can be totally differ-
ent from the original one. Only the names of these template types are the same. If
during the instantiation the concrete type argument is bool, the specific version
of list<bool> is chosen, otherwise the general one is selected.

Template specialization is essential practice for template metaprogramming
too. In template metaprograms templates usually refer to other templates, some-
times from the same class with different type argument. In this situation an
implicit instantiation will be performed. Such chains of recursive instantiations
can be terminated by a template specialization. See the following example of
calculating the factorial value of 5:

template<int N>
struct factorial
{
enum { value = N * factorial<N-1>::value };

};

template<>
struct factorial<0>
{
enum { value = 1 };

};

int main()
{
int result = factorial<5>::value;

}

To initialize the variable result here, the expression factorial<5>::value has
to be evaluated. As the template argument is not zero, the compiler instanti-
ates the general version of the factorial template with 5. The definition of
value is N * factorial<N-1>::value, hence the compiler has to instantiate
the factorial again with 4. This chain continues until the concrete value be-
comes 0. Then, the compiler choses the special version of factorial where the
value is 1. Thus, the instantiation chain is stopped and the factorial of 5 is calcu-
lated and used as initial value of the result variable in main. This metaprogram
“runs” while the compiler compiles the code.

Template metaprograms therefore stand for the collection of templates, their
instantiations and specializations, and perform operations at compilation time.
The basic control structures like iteration and condition appear in them in a
functional way [20]. As we can see in the previous example, iterations in metapro-
grams are applied by recursion. Besides, the condition is implemented by a tem-
plate structure and its specialization.



template<bool cond_, typename then_, typename else_>
struct if_
{
typedef then_ type;

};

template<typename then_, typename else_>
struct if_<false, then_, else_>
{
typedef else_ type;

};

The if structure has three template arguments: a boolean and two abstract
types. If the cond is false, then the partly-specialized version of if will be
instantiated, thus the type will be bound by the else . Otherwise the general
version of if will be instantiated and type will be bound by then .

Complex data structures are also available for metaprograms. Recursive tem-
plates store information in various forms, most frequently as tree structures, or
sequences. Tree structures are the favorite forms of implementation of expres-
sion templates [25]. The canonical examples for sequential data structures are
typelist [1] and the elements of the boost::mpl library [30].

We define a typelist with the following recursive template:

class NullType {};
struct EmptyType {}; // could be instantiated

template <typename H, typename T>
struct Typelist
{
typedef H head;
typedef T tail;

};
typedef Typelist< char, Typelist<signed char,

Typelist<unsigned char, NullType> > > Charlist;

In the example we store the three character types in a typelist. We can use helper
macro definitions to make the syntax more readable.

#define TYPELIST_1(x) Typelist< x, NullType>
#define TYPELIST_2(x, y) Typelist< x, TYPELIST_1(y)>
#define TYPELIST_3(x, y, z) Typelist< x, TYPELIST_2(y,z)>
// ...
typedef TYPELIST_3(char, signed char, unsigned char) Charlist;

Essential helper functions – like Length, which computes the size of a list at
compilation time – have been defined in Alexandrescu’s Loki library[1] in pure
functional programming style. Similar data structures and algorithms can be
found in the boost::mpl metaprogramming library [30].



3 Metastring Library

In this chapter we introduce our metastring library. In the examples we write
the type- and function names of boost without the scope (string, instead of
boost::mpl::string) to save space. If we write the names of functions or ob-
jects in STL we put the scope before them.

Metastring library is based on boost::mpl::string [34]. The Boost Metapro-
gram Library provides us a variety of meta containers, meta algorithms and meta
iterators. The design of that library is based on STL, the standard library of
C++. However, while the STL acts at run time, the boost::mpl works at com-
pilation time. The meta version of regular containers in STL, like list, vector,
deque, set and map are provided by boost::mpl. Also, there are meta versions
of most algorithms and iterators. The string metatype was added to boost in
the release 1.40. Contrary to other meta containers, the metastring has lim-
ited features. Almost all regular string operations, like concatenation, equality
comparison, substring selection, etc. are missing. Only the c str meta function,
which converts the metastring type to constant character array, is provided by
boost.

In our Metastring library we extended the boost::mpl::string with the
most common string operations. The boost::mpl::string is a variadic tem-
plate type [10] like the boost::mpl::vector [36], but only accepts characters as
template arguments. The instantiated metastring type can perform as a concrete
string at compilation time. Since an instantiated metastring is a type, one can
assign a shorter name to it by the typedef keyword.

Certain programming languages define the string datatype as a sequence of
characters; i.e. array or list of characters. The metastring itself is a template
type. The template arguments contain the value of the string. Because C++
does not support passing string literals to template arguments [18], we need to
pass string arguments character by character.

typedef string<’H’,’e’,’l’,’l’,’o’> str;

Setting metastrings char-by-char is very inconvenient, therefore, the boost li-
brary offers an improvement. In most architectures, the int contains at least
four bytes and since the size of a character is one byte, it can store four char-
acters. As a template argument can be any integral type, hence it is possible to
pass four characters as integer, and later on a metaprogram transforms it back
to characters. This provides a more readable notation:

typedef string<’Hell’,’o’> str;

Nevertheless, this is still not the simplest way of setting a metastring. The next
C++ standard will provide a better and standard solution: with the combination
of variadic templates [10] and user defined literals [28] we can pass a string in
the form of "Hello"s to variadic templates with character arguments.

Since the literature usually uses the parameter passing by four character
convention, in the rest of the paper we will follow that.



In the Metastring library we provide the meta-algorithms of the most com-
mon string operations, like concat, find, substr, equal, etc. These algorithms
are also template types, which accept metastring types as template arguments.
The concat and substr defines a type called type which is the result of the
operation. equals provides a static boolean constant called value, which is ini-
tialized as true if the two strings are equal, otherwise as false. find defines a
static std::size t constant called value, which is initialized as the first index
of matching, if the pattern appears in the text and as std::string::npos otherwise.
See the example about concatenation of strings below:

typedef string<’Hell’,’o’> str1;
typedef string<’ Wor’,’ld!’> str2;

typedef concat<str1, str2>::type res;

std::cout << c_str<res>::value

The type defined by concat<str1, str2> is a new metastring type, which rep-
resents the concatenation of str1 and str2 metastrings.

In the next chapter we present applications which can take either efficiency
or safety advantages of metastrings. The first example is pattern matching. If the
text or a pattern is known at compilation time, we can improve the matching
algorithms. (If both the text and the pattern are known, we can perform the
whole pattern matching algorithm at compilation time.) The second application
is a type-safe printf. If the formatter string is known at compilation time, we
can generate a specialized kind of printf algorithm to it, which can perform
type checking.

4 Pattern matching applications with metastrings

Most of the pattern matching algorithms start with an initialization step. This
step depends only on the pattern. If the pattern is known at compilation time,
we can shift this initialization subroutine from run time to compilation time.
This means that while the compiler compiles the code it will wire the result of
the initialization subroutine into the code. Thus, the algorithm does not need
to run the initialization step, because it is already initialized. The more often
the pattern matching algorithm is invoked, the more speed-up we achieve. The
example below shows how to use these algorithms:

typedef string<’patt’,’ern’> pattern;
std::string text;
// reading data to text

std::size_t res1 = kmp<pattern>(text);
std::size_t res2 = bm<pattern>(text);



The kmp and bm function templates implement the Knuth-Morris-Pratt [15] and
the Boyer-Moore [3] pattern matching algorithms. The return values are similar
to the std::string’s find memberfunction in STL and are either the first index
of the match or std::string::npos. The implementation of these functions are
the following:

template<typename pattern>
std::size_t kmp(const std::string& text)
{
const char* p = c_str<pattern>::value;
const char* next = c_str<initnext<pattern>::type>::value;
//implementation of Knuth-Morris-Pratt

}

template<typename pattern>
std::size_t bm(const std::string& text)
{
const char* pattern = c_str<pattern>::value;
const char* skip = c_str<initskip<pattern>::type>::value;
//implementation of Boyer-Moore

}

The pattern template argument must be a metastring type for both of the
functions. The initnext and the initskip meta algorithms create the next
and the skip vectors for the algorithms at compilation time. The rest of the
algorithms are the same as the normal run time version.

We compared the full run time version of algorithms with our solution where
the initialization is performed at compilation time. Fig. 1 shows the results
related to Knuth-Morris-Pratt and fig. 2 to Boyer-Moore. We tested these al-
gorithms with several inputs. The input was a common English text and the
pattern contained a couple of words. The pattern did not appear in the text,
thus the algorithms had to read all the input. We measured the running cost
with one, two, five and ten kilobyte long inputs. In both charts, the first columns
show the running cost of the original algorithms and the second ones show the
performance of the algorithms optimized at compilation time. The X-axis shows
the inputs and the Y-axis shows the instructions consumed during the algorithm.
The larger improvement can be achieved applying pattern match repeatedly.

It is quite rare but still interesting case when the text is known in compile
time. In this case a meta program can analyze the characteristic of the text
and choses the best pattern matching algorithm. For example if the alphabet of
the input text is large, the Boyer-Moore is more efficient, but if the alphabet is
small, choosing the Knuth-Morris-Pratt algorithm is more beneficial. The figure
3 shows the differences of search speed, when a search is performed by only
Knuth-Morris-Pratt (1st group) or Boyer-Moore(2nd group) algorithm or the
optimized version (3rd group). InputA denotes an ordinary English text and the
pattern is a single word. InputB denotes the text containing a few characters,



Fig. 1. Comparison of Knuth-Morris-Pratt

and the pattern has several repetitions. The Y-axis illustrates the consumed
instructions.

5 Type-safe printf

The printf function of the standard C library is easy to use and efficient but
has a major drawback: it is not type-safe. Due to the lack of type-safety, mis-
takes of the programmer may cause undefined behavior at runtime, because the
compiler does not verify the validity of the arguments passed to printf. There
are workarounds, for example gcc type checks printf calls and emits warnings
when they are incorrect, but it is specific to gcc. C++ introduced iostreams as
a replacement of printf. Iostreams are type-safe, but they have runtime and
syntactical overhead. The syntax of printf is more compact than the syntax of
streams, the structure of the displayed message is defined at one place, in the
format string, when we use printf but it is scattered across the whole expres-
sion when we use streams. Here is an example for using printf and streams to
display the same thing:

printf("Name: %s, Age: %d\n", name, age);
std::cout << "Name: " << name << ", Age: " << age << std::endl;

In this section we implement a type-safe version of printf using compilation
time strings assuming that the format string is available at compilation time,



Fig. 2. Comparison of Boyer-Moore

which is true in most cases. We write a C++ wrapper for printf which validates
the number and type of its arguments at compilation time and calls the original
printf without any runtime overhead.

We call the type-safe replacement of printf safePrintf. It is a template
function taking one class as a template argument: the format string as a compi-
lation time string. The arguments of the function are the arguments passed to
printf. As the example usage

safePrintf< string<’Hell’, ’o %s’, ’!’> >("John");

shows there is only a slight difference between the usage of printf and our type-
safe safePrintf. On the other hand, there is a significant difference between
their safety: safePrintf guarantees that the printf function called at runtime
has the right number of arguments and they have the right type.

Under the hood safePrintf evaluates a template-metafunction at compi-
lation time which verifies the number and type of the arguments. safePrintf
emits a compilation error [14] when at least one of the arguments is not correct.
If the evaluation succeeds safePrintf calls printf with the same arguments
safePrintf was called with. The template metafunction verifying the argu-
ments has only compilation time overhead, it has zero runtime overhead, the
body of safePrintf consists of a call to printf which is likely to be inlined.
At the end of the day using safePrintf has zero runtime overhead compared
to printf. Here is a sample implementation of our safePrintf:



Fig. 3. Comparison of algorithms

template <typename FormatString, typename A1, typename A2>
int safePrintf(A1 a1, A2 a2)
{
BOOST_STATIC_ASSERT((
CheckArguments<

FormatString,
boost::mpl::list<A1, A2>

>::type::value
));
return
printf(boost::mpl::c_str<FormatString>::type::value, a1, a2);

}

This example works only when exactly two arguments are passed to safePrintf.
We will generalise it later. We evaluate a metafunction called CheckArguments
which takes the format string, which is a compilation time string, and a type
list containing the types of the arguments passed to printf. CheckArguments
evaluates to a bool value: it is true when the argument types are valid and it
is false when they are not. CheckArguments parses the format string charac-
ter by character and verifies that the arguments conform to the format string.
After verifying the validity of the arguments safePrintf generates code call-
ing the original printf function of the C library. The format string passed to



printf is automatically generated from the compilation time string argument
of safePrintf. For example

safePrintf< string<’Hell’, ’o %s’, ’!’> >("John");

calls printf with the following arguments:

printf("Hello %s!", "John");

Under the hood CheckArguments uses a finite state machine [13] to parse the
format string. The states of the machine are represented by template meta-
functions, the state transitions are done by the C++ compiler during template
metafunction evaluation. Template metafunctions are evaluated lazily, thus the
C++ compiler instantiates only valid state transitions of the finite state machine.
When an argument of safePrintf has the wrong type according to the format
string, CheckArguments stops immediately, skipping further state transitions of
the finite state machine. Thus the C++ compiler has a chance to emit the error
immediately and continue compilation of the source code. We use a helper func-
tion, CheckArgumentsNonemptyFormatString, to implement CheckArguments:

template <typename FormatString, typename Ts>
struct CheckArgumentsNonemptyFormatString :
boost::mpl::eval_if<
typename boost::mpl::equal_to<

typename boost::mpl::front<FormatString>::type,
boost::mpl::char_<’%’>

>::type,
ParseSpecifier<

typename boost::mpl::pop_front<FormatString>::type,
Ts

>,
CheckArguments<

typename boost::mpl::pop_front<FormatString>::type,
Ts

> > {};

template <typename FormatString, typename Ts>
struct CheckArguments :
boost::mpl::eval_if<
typename boost::mpl::empty<FormatString>::type,
boost::mpl::empty<Ts>,
CheckArgumentsNonemptyFormatString<FormatString, Ts>

> {};

As one can see the template metafunction CheckArguments is just a wrapper
for CheckArgumentsNonemptyFormatString to handle empty format strings, the



real parsing is done by CheckArgumentsNonemptyFormatString. The combina-
tion of these metafunctions represent one state of the finite state machine. Every
character except % transitions back to this state, those characters are not im-
portant for us. The % character transitions to another state, represented by the
ParseSpecifier metafunction:

template <typename FormatString, typename Ts>
struct ParseSpecifier : boost::mpl::and_<

IsArgumentValid<
typename boost::mpl::front<FormatString>::type::value,
typename boost::mpl::front<Ts>::type>,

CheckArguments<
typename boost::mpl::pop_front<FormatString>::type,
typename boost::mpl::pop_front<Ts>::type > > {};

This metafunction verifies the argument specified by the currently parsed place-
holder in the format string using IsArgumentValid. When it is ok it continues
the verification, otherwise it emits an error immediately. The implementation of
IsArgumentValid is straightforward, it takes a character constant and a type
as its arguments and evaluates to a bool value. It can be implemented in a
declarative way:

template <char specifier, typename Ts>
struct IsArgumentValid : boost::mpl::false_ {};

template <>
struct IsArgumentValid<’c’, char> : boost::mpl::true_ {};

template <>
struct IsArgumentValid<’d’, int> : boost::mpl::true_ {};
// ...

Note that only the implementation of a simplified version of safePrintf was
presented here to demonstrate how our solution works, the implementation of
a verification function supporting the whole syntax of printf is too long to
discuss here.

We have only shown the implementation of a safePrintf taking exactly 2
arguments. Other versions can be implemented in a similar way:

template <typename FormatString>
int safePrintf();

template <typename FormatString, typename A1>
int safePrintf(A1 a1);

template <typename FormatString, typename A1, typename A2>
int safePrintf(A1 a1, A2 a2);



template <typename FormatString,
typename A1,
typename A2,
typename A3>

int safePrintf(A1 a1, A2 a2, A3 a3);
// ...

These functions can be automatically generated using the Boost precompiler li-
brary [31]. As it is the case with other Boost libraries, the number of printf func-
tions generated can be specified by a macro evalutaing to an integer value. Thus,
users of the library can increase it according to their needs. We do not present
here how we generate these functions, it can be done using BOOST PP REPEAT
provided by the Boost precompiler library.

This solution combines the simple usage and small run-time overhead of
printf with the type-safety of C++ using compilation time strings. Stroustrup
wrote a type-safe printf using variadic template functions [10, 28] which are part
of the upcoming standard, C++0x [21]. His implementation uses runtime format
strings and transforms printf calls to writing to C++ streams at runtime. For
example the code

printf("Hello %s!", "John");

using his type-safe printf does

std::cout << ’H’ << ’e’ << ’l’ << ’l’ << ’o’
<< ’ ’ << "John" << ’!’;

at runtime. This solution prints the format string character by character which
makes it extremely slow. The author’s intention was to demonstrate the use of
variadic templates, but it can be further optimized in the following way:

std::cout << "Hello " << "John" << "!";

We have measured the speed of normal printf, used by our implementation,
and both of the above. We measured the speed of the following call:

printf("Test %d stuff\n", i);

and its std::cout equivalents. We printed the text 100 000 times and measured
the speed using the time command on a Linux console. The average time it took
can be seen in Table 1. printf, which is used by our type-safe implementation,
is almost four times faster than the example on [28] and more than two times
faster than the optimized version of that example.
We measured the performance of the C style printf function and the C++
style std::cout stream with several kinds of input from the simple ones to
more compound samples. To do this measurement we used the profiler module
of Valgrind [35] dynamic analysis tool called Callgrind. Table 2 shows the results.



Method used Time

std::cout for each character 0,573 s
normal std::cout 0,321 s
printf 0,152 s

Table 1. Elapsed time

Pattern printf cout

”hello” 326 363
”hello%s”, ”world” 603 722
”hello%s%d”, ”world”, 1 942 1217
”hello%s%d%c”, ”world”, 1, ’a’ 1149 1500
”hello%s%d%c\n”, ”world”, 1, ’a’ 1395 2148

Table 2. Instructions fetched

In the first column we present the printed pattern. The second column shows
the instructions needed to print it using printf, and the third one shows the
same using cout.
As we can see from the table, cout is slower than printf. When the printed
text is simple, the difference is slight, but it is growing as the text becomes more
and more complex.

Another difference between Stroustrup’s type-safe printf and ours is the
way they validate the types of the arguments. Stroustrup’s solution ignores the
type specified in the format string, it displays every argument supporting the
streaming operator regardless of its type. For example, it accepts the following
incorrect usage of printf

printf("Incorrect: %d", "this argument should be an integer");

while our solution emits an error at compilation time. On the other hand, our
solution can only deal with types the C printf can handle, while Stroustrup’s
solution can deal with any type which supports the streaming operator.

A drawback of Stroustrup’s solution is that it does not detect when the
arguments of printf are shifted or are in the wrong order and displays them
incorrectly. For example Stroustrup’s printf accepts

printf("Name: %s\nAge: %d\n", "27", "John");

and displays

Name: 27
Age: John

while our solution emits a compilation error.
Stroustrup’s solution throws an exception at runtime when the number of

arguments passed to printf is incorrect, which can lead to hidden bugs due to



incomplete testing. Our solution emits compilation errors in such cases to help
detecting these bugs.

6 Related Work

Modern programming languages with object-oriented features and operator over-
loading are able to create classes with an interface close to high level matematical
notations. For instance, arrays, matrices, linear algebraic operations are typical
examples. However, as Veldhuizen noted, the code generated by such libraries
tends to be inefficient [27]. As an example, he measured array objects using op-
erator overloading in C++ were 3-20 times slower than the corresponding low
level implementation. This is not because of poor design on the part of library
developers, but because object-oriented languages force inefficient implementa-
tion techniques: dynamic memory allocations, high number of object copying,
etc. These performance problems are commonly called as abstraction penalty.

Attempts to implement smarter optimizers were largely unsuccessful, mainly
because of the lack of semantical information. Efforts to describe semantics of
a type is still in experimental phase without too much result [11]. On the other
hand, a more promising approach is to write an active library. Active libraries
[24] act dynamically, makes decisions at compilation time based on the calling
context, choose algorithms, and optimize code. These libraries are not passive
collections of functions or objects, like traditional libraries, but take an active role
in generating code. Active libraries provide higher abstractions and can optimize
those abstractions themselves. In C++ active libraries are implemented with the
help of template metaprogramming techniques [13].

An other possible optimization technique is partial evaluation [8, 12]. Partial
evaluators regard a program’s computation as containing two subsets: static
computations which are performed at compile time, and dynamic computations
performed at run time. A partial evaluator executes the static optimizations
and produces a specialized residual program. To determine which portions of a
program can be evaluated, a partial evaluator may perform binding time analysis
to separate static and dynamic data and language constructs. Sometimes we
call such a language as two-level language. C++ template resemble a two-level
language, as function templates take both statically bound template parameters
and dynamically bound function arguments [27].

There are third party libraries to apply string-related compilation time oper-
ations in some special areas of programming. The boost::spirit library is an
object oriented recursive descent parser framework [33]. EBNF grammars can be
written with C++ syntax and these grammars can be inlined in the C++ source
code. Since the implementation of spirit uses template metaprogramming tech-
niques, the parser of the EBNF grammar is generated by the C++ compiler. The
boost::wave C++ preprocessor library [37] uses the spirit parser construction
library to implement a C++ lexer with ISO/ANSI Standards conformant pre-
processing capabilities. Wave provides an iterator interface which gives access to
the currently preprocessed token of the input stream. These preprocessed tokens



are generated on-the-fly while iterating over the preprocessor iterator sequence.
The boost::xpressive is a regular expression template library [38] dealing with
static regular expressions. This library can perform syntax checking and generate
optimized code for static regexes.

Stroustrup demonstrates how a type-safe printf can be built using the fea-
tures of the upcoming C++ standard [21]. The differences between this and our
solution are explained in chapter 5.

Since the style of metaprograms is unusual and difficult, it requires high
programming skills to write. Maintenance of template metaprograms are much
more harder. Besides, it is sorely difficult to find errors in template metapro-
grams. Porkoláb et al. provided a metaprogram debugger tool[17] in order to
help finding bugs.

7 Summary and Future Work

Strings, one of the most commonly used data types in programming, had only
weak support for C++ template metaprograms. In this paper we emphasize the
importance of string manipulation at compile time. We have developed Metas-
tring library based on boost::mpl::string and extended its compile time func-
tionality with the usual operations of run time string libraries. We presented the
implementational details of our Metastring library and discussed syntactic sim-
plifications to reduce the syntactical overhead. To illustrate the importance of
the metastring, we investigated two application areas in details.

When either the text or the pattern are known at compilation time, pattern
matching algorithms can be significally improved. We dealt with two pattern
matching algorithms: Boyer-Moore and Knuth-Morris-Pratt to demonstrate the
power of metastrings. Our future work is to create a more sophisticated method
– which takes more pattern matching algorithms into account – to find the best
pattern matching solution.

As the other motivating application, we have created a C++ wrapper for
printf function taking the format string as a compilation time string argument
and validating the type of the runtime arguments based on that string. Validation
happens at compilation time, therefore our solution has zero run time overhead
but ensures type-safety. We have compared our type-safe printf solution to the
one on Stroustrup’s website and found that our solution provides stricter type-
safety and runs at least two times faster. Our future plan is to introduce the %a
specifier – which means any – to force the compiler to deduce the argument’s
type. Stroustrup’s solution behaves similarly.
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