
Towards more reliable C++ template metaprograms∗

Ábel Sinkovics
Eötvös Loŕand University

Faculty of Informatics
Budapest, Hungary
abel@elte.hu

Endre Saj́o
Eötvös Loŕand University

Faculty of Informatics
Budapest, Hungary
baja@elte.hu

Zoltán Porkoĺab
Eötvös Loŕand University

Faculty of Informatics
Budapest, Hungary
gsd@elte.hu

Abstract

Writing reliable software is challenging in the domain of C++template metaprograms. Among
other factors, the relatively complex syntax, the lack of good error handling techniques and the short-
comings of existing test methods can be named as sources of unreliability in metaprograms. In this
paper we suggest a unit testing framework for C++ template metaprograms that guarantees the execu-
tion of all test cases and provides proper summary-report with enhanced and portable error reporting.
Neither of these elements serve as a silver bullet for implementing compile-time algorithms, but to-
gether they may form an important step towards writing more reliable C++ template metaprograms.

1 Introduction

Writing reliable software presumes a number of components from various areas of the software infras-
tructure. In the emerging area of C++ template metaprogramming, toolsets for these elements are still in
an experimental phase [7]. Reusable libraries [9] and experimental debuggers and profilers [11] are avail-
able. Among other aspects, proper error handling and reporting possibilities, and easy to use, versatile
test tools play an important role.

Boost.MPL has its own unit tests and testing solution based on compile-time assertions, thus the
developer gets non-customizable compiler dependent error messages for failed test cases. These results
are difficult to understand for the developers and are hard to processin an automated way. When the code
is compiled with a new compiler or a newer version of the same compiler, the formatand the content of
the error messages may change.

In this paper we suggest a new way to implement a unit testing framework for C++ template metapro-
grams. The test tool guarantees the execution of all test cases and collects test results – success or failure
with reasons – in a run-time data structure. This container is available at runtimeand enables cus-
tomized summary-reporting or integration into other unit testing frameworks. Proper reporting requires
compiler-independent pretty printing of types – first class citizens in template metaprograms. These
features together provide an orthogonal way for testing metaprograms, i.e. the developer can use his
own favorite unit testing tool (like Boost.Test, GoogleTest or CppUnit) accessing the metaprogram test
results. We have re-written many of the Boost.MPL test cases as a proof ofconcept [5].

The rest of the paper is organized as follows. In Section 2 we owerview of the existing unit testing
capabilities, especially in the Boost metaprogram library. Using an example weexplain the difficulties
of the current methods in Section 3. Our novel approach is is introduced inSection 4. We evaluate
our method in Section 5. In Section 6 we overview pretty printing of type information and show how
to embed the framework into third-party unit testing tools. In Section 6 we discuss error reporting. In
Section 7 we evaluate our solution. In Section 8 we overview related works.Our paper concludes in
Section 9.

∗The Project is supported by the European Union and co-financed by theEuropean Social Fund (grant agreement no.
TAMOP 4.2.1./B-09/1/KMR-2010-0003).

1

abel@elte.hu
baja@elte.hu
gsd@elte.hu

Towards more reliable C++ template metaprograms Sinkovics et al.

2 Existing unit testing facility in Boost

In this paper we use themin template metafunction [8, 6] as a running example. It takes two arguments
and returns the smaller one.min compares the arguments using theless metafunction.min can be
implemented the following way:

template <class A, class B>

struct min : if_<typename less<A, B>::type, A, B> {};

This solution usesif from Boost.MPL and another metafunction,less, to compare the values. We
expectmin andless to be polymorphic: they should work with any compile-time data that can be
compared. When someone develops a new compile-time data type in the future, they should be able to
extend these metafunctions to work with his type, as well, without changing existing code.

In Boost.MPL every compile-time value has a member type calledtag that is used to determine
whether that value is a wrapped integral, a list, a vector, etc. There may be more than one implementa-
tions of a compile-time data-type, such as wrapped integrals. As long as they provide the same interface
and have the sametag, all metafunctions operating on the wrapped integrals can deal with them. The
tag is used to identify that they are wrapped integrals.

tag works like the type information of compile-time data-structures. Polymorphic metafunctions in
Boost.MPL get thetag information of the arguments, instantiate a helper metafunction class [6] with
the tags as template parameters and pass the original arguments to that metafunction class. Different
specializations of the metafunction class can be created for different tagsand tag combinations. Each
specialization implements one overload of the metafunction. Since a new specialization can be imple-
mented without changing existing code, new overloads for newly created classes can be implemented
later.

Note that themin andless metafunctions are already implemented in Boost.MPL. In this paper we
present how they are currently implemented, what features of them can and can not be tested and how
they can be implemented in a way to improve their testability and error reporting.

The basic idea behind the existing compile time unit testing facility of Boost.MPL is to generate
syntactically erroneous code on failed assertions and make an effort to decorate the compiler’s error
messages so relevant information stands out and can be relatively easily identified. To achieve this, the
library provides a handful of macros for different assertions and test suite organization. The following
assertion macros are available:

• BOOST MPL ASSERT((predicate)) with predicate a nullary metafunction: Generate a compi-
lation error whenpredicate:: type::value != true, has no effect otherwise.

• BOOST MPL ASSERT NOT((predicate)) with predicate a nullary metafunction: Generate a
compilation error whenpredicate:: type::value == true, has no effect otherwise.

• BOOST MPL ASSERT MSG(expression, message, (type1,type2,...)) with expression

an arbitrary integral constant expression,message a C++ identifier andtypeN arbitrary types:
Generate a compilation error ifexpression != true, including themessage itself and the listed
types in the error message (effectively exploiting the compiler’s own pretty printing capabilities).

• BOOST MPL ASSERT RELATION(x, relation, y) with (x relation y) a legal C++ expres-
sion: Generate a compilation error if(x relation y) == false, has no effect otherwise.

For test suite organization, Boost.MPL provides the special macroMPL TEST CASE, which expands
to a unique function name that has the line number of the current expansion as a suffix. Since the function

2

Towards more reliable C++ template metaprograms Sinkovics et al.

name in which a particular syntax error occurs is normally output along with thedescription of the error
itself, this can help determine where bodies of failed assertions are located inthe original source code.

3 A simple example

Consider the following example in which we try to testmin. We refer to theboost::mpl namespace as
mpl.

MPL_TEST_CASE()

{

MPL_ASSERT((

boost::is_same<

min< mpl::int_<5>, mpl::int_<7> >::type,

mpl::int_<5>

>

));

MPL_ASSERT((

boost::is_same<

min< mpl::int_<7>, mpl::int_<5> >::type,

mpl::int_<5>

>

));

}

this code compiles without warnings which indicates the snippet has passed our tests, and an executable
is created with the sole reason to print on the screen what we already know– “No errors detected.”. For
the next snippet we change the expected results to violate the assertions, essentially simulating library
bugs.

MPL_TEST_CASE()

{

MPL_ASSERT((

boost::is_same<

min< mpl::int_<5>, mpl::int_<7> >::type,

mpl::int_<6>

>

));

MPL_ASSERT((

boost::is_same<

min< mpl::int_<7>, mpl::int_<5> >::type,

mpl::int_<6>

>

));

}

From this codeGCC generates the following compiler errors:

3

Towards more reliable C++ template metaprograms Sinkovics et al.

mintest.cpp: In function ’void test9()’:

mintest.cpp:11:3: error: no matching function for call to

’assertion_failed(mpl_::failed************

boost::is_same<mpl_::int_<5>, mpl_::int_<6> >::************)’

mintest.cpp:17:3: error: no matching function for call to

’assertion_failed(mpl_::failed************

boost::is_same<mpl_::int_<5>, mpl_::int_<6> >::************)’

This output can be thought of as a harsh unit test report: the function nametest9 identifies line 9 as the
location of the problematic test case declaration, and the “no matching function...” messages pinpoint
and describe failed assertions.

Clearly, while arguably usable and helpful, this output is difficult to read even in this trivial example.
In fact, it gets worse. When compiled withClang, a compiler with considerably more sophisticated di-
agnostic capabilities thanGCC, there is an approximately tenfold growth in output size. The real problem
is that while the compiler goes out of its way to produce the most detailed error report, its very efforts
are turned into a hindrance as the information artificially injected in the error messages becomes more
and more lost in the noise. Another major issue is the non-standard format ofthe output which means
automatic processing would be difficult and certainly not portable.

4 Our approach

The basic principle of our approach is to compile the source, evaluate test cases at compile time and
generate an executable that outputs a detailed and customizable report on the results. The exact pro-
cedure is as follows. Test cases are written as nullary metafunctions returning wrapped boolean values.
These metafunctions are evaluated and, depending on the fail/success statuses, report items are generated
utilizing the framework’s own type pretty printing facility. Pretty printing is needed to display detailed
error messages. For example when a test case compares the result of a metafunction evaluation with the
expected value and they differ, the test framework should display the result and the expected value in the
report. Our solution achieves this by generating a string at compile-time containing all these details. To
generate these, we need to be able to convert classes – data, metaprograms operate on – into strings. A
number of similar approaches have addressed this issue so far [10, 3].Our approach takes Boost.MPL
andtags into account. We have implemented our solution as a special metafunction,to stream, which,
as a class, provides a staticrun method taking an output stream as its parameter and pretty printing the
type to the stream. To use it with a custom type, one has three options.

• to stream can be specialized directly.

• Classes built withto stream in mind can contain an inner type,to stream, with a staticrun
method implementing pretty printing.

• For classes with atag, tag-dispatched metafunction classto stream impl is provided and can
be specialized.

The above options are checked in the order they are presented, thus for example thetag of a class with
ato stream inner class is never checked. The above options for specialization are demonstrated in the
following example.

4

Towards more reliable C++ template metaprograms Sinkovics et al.

struct UDT; // UDT stands for User Defined Type

struct UDT_tag;

struct tagged_UDT { typedef UDT_tag tag; };

struct UDT_with_to_stream

{

struct to_stream

{

static std::ostream& run(std::ostream& os)

{

return os << "UDT_with_to_stream";

}

};

};

template<>

struct to_stream<UDT>

{

typedef to_stream type;

static std::ostream& run(std::ostream& os)

{

return os << "UDT";

}

};

template<>

struct to_stream_impl<UDT_tag>

{

template <typename Type>

struct apply

{

typedef apply type;

static std::ostream& run(std::ostream& os)

{

return os << "tagged_UDT";

}

};

Test results are collected in STL containers in a test suite hierarchy, the root of which is located in a
global test driver object. This hierarchy is accessible through an iterator interface. Test result objects
provide their own methods via which fail/success statuses, test names and detailed descriptions can be
queried.

Our implementation defines a class for test results with the following public methods:

5

Towards more reliable C++ template metaprograms Sinkovics et al.

class test_result

{

public:

// ...

test_result(bool success, const std::string& reason);

bool success() const;

const std::string& get_reason() const;

// ...

};

These methods can be used to query the the fact wether the test case succeeded or not and the pretty-
printed reason at runtime. These objects can be constructed by a template function taking the test case
as a template argument:

template <class F>

test_result run_test()

{

std::ostringstream s;

to_stream<F>::run(s);

return test_result(F::type::value, s.str());

}

The function evaluates the test case by accessing its nested type calledtype. The result is expected to
be a boxed logical value. To unbox it, the function uses the nestedvalue and passes it to the constructor
of test result. The function usesto stream to pretty-print the test function and passes the result to
thetest result constructor.

The test cases are collected intotest suites. A test suite can contain test cases and other test suites,
thus the tests are collected in a tree structure of nested suites. This hierarchy is built at runtime, by the
constructors of global objects. We do not present the details of these constructors and the types forming
the tree here, they can be found in [5]. This tree can be processed by regular C++ code, the root can be
accessed as a singleton object. The tree provides STL-like iterators to process the children of each node.
This data-structure can be used to either generate a report directly or to integrate compile-time tests into
runtime testing frameworks. In our implementation we provide a number of report generators and a tool
that adds compile-time tests to the Boost unit testing framework’s test suite hierarchy.

Test cases are registered in the driver by constructors of global objects. Our implementation provides
a convenient macro for creating these global objects. It takes two parameters – an object representing
the location of the test case in the test suite hierarchy and the name of the metafunction. In-line test
case declarations, like the ones which can be defined with the currentBOOST MPL ASSERT macro, are not
supported. This approach has a positive side-effect: when the test case contains compilation errors, the
diagnostic messages will point to the definition of the test case as opposed to the Boost solution in which
they point to the macro call. This difference becomes significant when the test case exceeds a single line,
as our approach enables the compiler to locate the failure in the source codemore accurately.

The tree structure the test results are collected in is available and can be traversed at runtime. Code
based on an unit testingt framework dealing with runtime code can traverse this tree and register the tests
results in the runtime unit testing framework. Adapters for different runtime unit-testing frameworks can
be developed. Our implementation provides an adapter for Boost.Test.

6

Towards more reliable C++ template metaprograms Sinkovics et al.

5 Unit tests for min revisited

With the above applied, we get the following test suite formin.

const suite_path suite = suite_path("sample")("suite");

typedef boost::is_same<

min< mpl::int_<5>, mpl::int_<7> >::type,

mpl::int_<5>

> test1;

ADD_TEST(suite, test1)

typedef boost::is_same<

min< mpl::int_<7>, mpl::int_<5> >::type,

mpl::int_<5>

> test2;

ADD_TEST(suite, test2)

By compiling it, the unit tests are executed. By linking it together with an object filecontaining amain
function that calls a report generator, an executable is generated that displays the test summary. For
example by using the plain text report generator we provide with our implementation, the following
output is generated:

The following tests have been executed:

suite::test1: OK

suite::test2: OK

========================

Number of tests: 2

Number of failures: 0

Now, to simulate library bugs, we modify the suite.

typedef boost::is_same<

min< mpl::int_<5>, mpl::int_<7> >::type,

mpl::int_<6>

> test1;

ADD_TEST(suite, test1)

typedef boost::is_same<

min< mpl::int_<7>, mpl::int_<5> >::type,

mpl::int_<6>

> test2;

ADD_TEST(suite, test2)

When run the test cases, we expect two failures. This yields the following summary.

7

Towards more reliable C++ template metaprograms Sinkovics et al.

The following tests have been executed:

suite::test1: FAIL (mintest.cpp:16)

is_same<int_<5>, int_<6>>

suite::test2: FAIL (mintest.cpp:22)

is_same<int_<5>, int_<6>>

========================

Number of tests: 2

Number of failures: 2

Besides being concise, this output no longer depends on the compiler either. The format is standard, but
also customizable.

6 Reporting errors

To test a metafunction properly, one has to implement tests verifying the behaviour of the functions for
valid and for invalid input as well. When a metafunction breaks the compilation process (which is similar
to a unit test causing a core-dump in run time tests), the unit testing framework can not generate a test
report. To make metafunctions testable for invalid input, they must not break the compilation process.

less is a metafunction taking 2 arguments: the two values to compare. Following the solution
Boost.MPL uses to make template metafunctions polymorphic, we defineless the following way:

template <class T1, class T2>

struct less_impl;

template <class a, class b>

struct less : mpl::apply<

less_impl<

typename mpl::tag<a>::type,

typename mpl::tag::type

>, a, b

> {};

We can implementless for integrals by specializingless impl for integral c tag:

template <>

struct less_impl<integral_c_tag, integral_c_tag>

{

template <class A, class B>

struct apply

{

typedef mpl::bool<(A::value < B::value)> type;

};

};

Assume that later we need to develop the following compile-time data-structure to represent rational
numbers:

8

Towards more reliable C++ template metaprograms Sinkovics et al.

struct rational_tag;

template <class Numerator, class Denominator>

struct rational

{

typedef rational_tag tag;

//...

};

To make rational numbers comparable usingless, we create a new specialization ofless impl:

template <>

struct less_impl<rational_tag, rational_tag>

{

template <class A, class B> struct apply /*...*/;

};

This is howless is implemented in Boost.MPL. We should create unit tests forless. First, we need to
make sure thatless works for wrapped integrals:

typedef

less<mpl::int_<int, 11>, mpl::int_<int, 13> >

test_less_for_integrals;

This compares two integrals usingless and verifies the result of the comparison. Other cases – such as
cases whenless should returnfalse – can be tested in a similar way. We should create another unit
test checking thatless does not work for arguments that can not be compared:

less<mpl::list_c<int, 1, 2>, mpl::list_c<int, 3> >

Boost.MPL’s implementation, we have presented here, emits a compilation error insuch cases, since the
general case ofless impl is not implemented. We have no chance to catch that error in a unit testing
environment.

We propose an extension ofless and template metafunctions in general to return a special value
indicating error instead of emitting a compilation error. It can be processed by the code calling the
metafunction. Only a top-level metafunction returning error should cause acompilation error. A new
compile-time data type can be used to describe errors. Error values containa description of the error,
which is an arbitrary compile-time data structure.

struct exception_tag;

template <class Data>

struct exception

{

typedef exception_tag tag;

typedef exception type;

};

template <class Exception>

struct get_data;

9

Towards more reliable C++ template metaprograms Sinkovics et al.

We create a new tag,exception tag, for error values and theexception template to represent error
values. The custom data an error value holds can be accessed using theget data metafunction. Its
implementation can be found in [5]. Usingexception we can implement the general, non-specialized
case ofless:

struct not_comparable;

template <class T1, class T2>

struct less_impl

{

template <class A, class B>

struct apply

{

typedef exception<not_comparable> type;

};

};

We created a helper class,not comparable, representing the error message. Specializations ofless impl

can implement comparison and return the results. When there is no specialization, the general imple-
mentation takes care of returning thenot comparable error. Now we can implement the test checking
the behavior ofless when called with arguments that cannot be compared:

template <class X>

struct is_error /* check if X is an exception */;

typedef boost::is_error<

less<mpl::list_c<int,1,2>, mpl::list_c<int, 3> >

> test_less_with_non_comparable;

We can useless to implementmin. min takes two arguments, compares them usingless and returns
the smaller one. It is implemented the following way in Boost.MPL:

template <class A, class B>

struct min : mpl::if_<less<A, B>, A, B> {};

When the arguments are comparable, it works fine. However, when the twoarguments can not be com-
pared,less returns anexception, not a wrapped boolean value, which breaksif . We could expect
if to return an error when the condition is not a boolean value, but in that case min would return an
error indicating thatif ’s condition was not a boolean value. This error message would hide the original
reason that the two arguments cannot be compared. We need to check ifa andb are comparable, return
an error when they are not and return the smaller value when they are:

template <class A, class B>

struct min : mpl::eval_if<

typename is_error<less<A, B> >::type,

less<A, B>,

mpl::if_<less<A, B>, A, B>

> {};

10

Towards more reliable C++ template metaprograms Sinkovics et al.

This version ofmin can deal with incomparable arguments, as well, and reports meaningful error mes-
sages. These error messages don’t break the compilation process. They return errors a unit testing
framework can process and add to the generated report.

Following the approach presented above, propagation of errors has tobe implemented manually by
explicitly checking the return value of every metafunction being called. This isa tedious and error prone
process, which can be significantly improved by using monads [12]. A number of different monads
exist for dealing with error propagation. Given the complexity of the of topic, we don’t cover it in this
paper. It is important to note that using the approaches described in [12]for error-propagation require
the modification of the metafunctions in the entire chain. However, the paper presents a technique that
makes these changes syntactically trivial (wrapping the body of the metafunctions withtry <...>). The
technique impacts compilation time, however, based on the measurements in the paper, it has a constant
cost.

Template metaprograms are compiled and evaluated during the compilation of the C++ code they
are embedded into. It makes it difficult to differentiate between the two steps,however the difference
becomes significant when the code is tested. Syntax errors of the code being tested or the tests themselves
can not be caught by the testing framework. Since syntax errors breakthe compilation process, the tests
are not compiled and not executed, thus no report can be generated in those cases. The testing framework
can check the result of assertions during the execution of the metaprograms. The fact that both the
compilation and the execution of the metaprograms happen during the compilation of the C++ code may
be confusing for the developer.

7 Evaluation

Boost.MPL has a large number of unit tests. They use static assertions and generate compilation errors
in case of failed test cases. We have ported a number of the Boost.MPL teststo our framework [5]. We
changed the expected results of the test cases to simulate library bugs and run the tests to see the error
reports. We have run our tests with three different compilers: gcc 4.5.2, clang 2.8 and Visual C++ 10.

• With the solution based on static assertions we got compilation errors, where the reason was in-
side long error reports. The length and verbosity of the error reports was different with different
compilers. The format of the error report was different with differentcompilers.

• With the approach presented in this paper the error reports showed the reason of the failure only.
The format of the report was the same with every compiler.

We have presented a new approach for implementing template metafunctions which can be tested for
success and for failure as well. Following this approach metafunctions return special values instead of
breaking the compilation process. Unit testing frameworks can detect thesevalues and generate reports
based on them.

8 Related work

A number of unit testing frameworks are available for C++.

• The Boost library collection has a test library for testing C++ code. It focuses on testing runtime
C++ code. It supports organizing test cases into a hierarchical structure of test suites. A test case
consists of a number of assertions.

11

Towards more reliable C++ template metaprograms Sinkovics et al.

• The Boost template metaprogramming library has its own unit tests and uses the Boost test library.
Its testing method is based on compile-time assertions, thus the developer gets compilation errors
for failed test cases. These compilation errors are difficult to understand and on some compilers
overly verbose. The quality of failure reporting is heavily dependent onthe compiler.

• Google has a C++ testing framework [4] for testing runtime code. It supports a wide range of
assertions with useful diagnostic information in case of failed assertions. It provides tools for
displaying useful diagnostic information for new user defined predicates. It also supports writ-
ing code for printing user defined data types. These features provide similar functionality to our
to stream solution at runtime.

• CppUnit [2] is the C++ port of JUnit [1], a popular unit testing frameworkfor Java. It supports
creating test suites and different test cases and it can generate a report about passed and failed test
cases. Testing is based on runtime assertions. It supports testing runtime code.

9 Conclusion

Easy to use test tools, proper error handling and reporting is weakly supported in C++ template metapro-
gramming. In this paper we have presented solutions improving these areas.We have implemented a
testing framework with advanced and portable error reporting capabilities.As the results of compile time
tests are collected in a runtime data-structure, it can be easily integrated into various popular unit testing
frameworks. We have ported many of the Boost.MPL unit tests to our framework and have achieved
more portable error reporting. All solutions have been implemented as an open source library [5].

References

[1] Junit project home page, 2010. http://www.junit.org/.

[2] Cppunit project home page, 2011. http://sourceforge.net/apps/mediawiki/cppunit/index.php?title=MainPage.

[3] Geordi – c++ eval bot, 2011. http://www.xs4all.nl/ weegen/eelis/geordi.

[4] Google c++ testing framework, 2011. http://code.google.com/p/googletest/.

[5] Ábel Sinkovics. The source code of mpllibs, 2010. Availableas http://github.com/sabel83/mpllibs.

[6] David Abrahams and Aleksey Gurtovoy.C++ Template Metaprogramming: Concepts, Tools, and Techniques
from Boost and Beyond (C++ in Depth Series). Addison-Wesley Professional, 2004.

[7] Andrei Alexandrescu.Modern C++ design: generic programming and design patterns applied. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[8] Krzysztof Czarnecki and Ulrich W. Eisenecker.Generative programming: methods, tools, and applications.
ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 2000.

[9] Aleksey Gurtovoy and David Abrahams. Boost.mpl, 2004. http://www.boost.org/doc/libs/147 0/libs/mpl/
doc/index.html.

[10] Scott Meyers. Appearing and disappearing consts in c++, 2011. Available as http://cpp-
next.com/archive/2011/04/.

[11] Zoltán Porkoĺab, J́ozsef Mihalicza, and́Adám Sipos. Debugging c++ template metaprograms. InProceedings
of the 5th international conference on Generative programming and component engineering, GPCE ’06,
pages 255–264, New York, NY, USA, 2006. ACM.

[12] Ábel Sinkovics and Zolt́an Porkoĺab. Implementing monads for c++ template metapro-
grams. Technical Report TR-01/2011, Eötvös Loŕand University, Faculty of Informat-
ics, Dept. of Programming Languages and Compilers, September 2011. Available as
http://plcportal.inf.elte.hu/en/publications/TechnicalReports/monad-tr.pdf.

12

	Introduction
	Existing unit testing facility in Boost
	A simple example
	Our approach
	Unit tests for min revisited
	Reporting errors
	Evaluation
	Related work
	Conclusion

