Towards more reliable C++ template metaprograms

Abel Sinkovics Endre Saj Zoltan Porkohb
Ebtvos Lo@and University Ebtvos Lo@and University Ebtvos Lo@and University
Faculty of Informatics Faculty of Informatics Faculty of Informatics
Budapest, Hungary Budapest, Hungary Budapest, Hungary
abel@elte.hu baja@elte.hu gsd@elte.hu
Abstract

Writing reliable software is challenging in the domain of Ctemplate metaprograms. Among
other factors, the relatively complex syntax, the lack ad@jerror handling techniques and the short-
comings of existing test methods can be named as sourcesaialility in metaprograms. In this
paper we suggest a unit testing framework for C++ templatapnegrams that guarantees the execu-
tion of all test cases and provides proper summary-repdntevinanced and portable error reporting.
Neither of these elements serve as a silver bullet for imptging compile-time algorithms, but to-
gether they may form an important step towards writing metalle C++ template metaprograms.

1 Introduction

Writing reliable software presumes a number of components from varieas aff the software infras-
tructure. In the emerging area of C++ template metaprogramming, toolsetsgerdleenents are still in
an experimental phade [7]. Reusable librafiés [9] and experimentadidels and profiler§ [11] are avail-
able. Among other aspects, proper error handling and reporting pitiesiband easy to use, versatile
test tools play an important role.

Boost.MPL has its own unit tests and testing solution based on compile-time assettios the
developer gets non-customizable compiler dependent error messadgketbtest cases. These results
are difficult to understand for the developers and are hard to procassautomated way. When the code
is compiled with a new compiler or a newer version of the same compiler, the famdathe content of
the error messages may change.

In this paper we suggest a new way to implement a unit testing framework-foteéinplate metapro-
grams. The test tool guarantees the execution of all test cases andsdeltcesults — success or failure
with reasons — in a run-time data structure. This container is available at ruatichenables cus-
tomized summary-reporting or integration into other unit testing frameworkgéePreporting requires
compiler-independent pretty printing of types — first class citizens in templatapnograms. These
features together provide an orthogonal way for testing metaprogramshéeedeveloper can use his
own favorite unit testing tool (like Boost.Test, GoogleTest or CppUnit) ssiog the metaprogram test
results. We have re-written many of the Boost.MPL test cases as a proonoépt[[5].

The rest of the paper is organized as follows. In Sedtlon 2 we owenrvighexisting unit testing
capabilities, especially in the Boost metaprogram library. Using an exampéxp¥ain the difficulties
of the current methods in Sectiéh 3. Our novel approach is is introduc8eédtion 4. We evaluate
our method in Sectiopn] 5. In Sectibh 6 we overview pretty printing of type infiomand show how
to embed the framework into third-party unit testing tools. In Sedtion 6 we diseusr reporting. In
Section ¥ we evaluate our solution. In Sectidn 8 we overview related w@ks.paper concludes in
Sectior[9.

*The Project is supported by the European Union and co-financed butmpean Social Fund (grant agreement no.
TAMOP 4.2.1./B-09/1/KMR-2010-0003).

abel@elte.hu
baja@elte.hu
gsd@elte.hu

Towards more reliable C++ template metaprograms Sinkovics et al.

2 Existing unit testing facility in Boost

In this paper we use thein template metafunction [8] 6] as a running example. It takes two arguments
and returns the smaller one&in compares the arguments using thess metafunction.min can be
implemented the following way:

template <class A, class B>
struct min : if_<typename less<A, B>::type, A, B> {};

This solution usedf_ from Boost.MPL and another metafunctiargss, to compare the values. We
expectmin andless to be polymorphic: they should work with any compile-time data that can be
compared. When someone develops a hew compile-time data type in the futyrehtiuld be able to
extend these metafunctions to work with his type, as well, without changingnexcode.

In Boost.MPL every compile-time value has a member type callgglthat is used to determine
whether that value is a wrapped integral, a list, a vector, etc. There may fleetihham one implementa-
tions of a compile-time data-type, such as wrapped integrals. As long asrthaegieothe same interface
and have the samgag, all metafunctions operating on the wrapped integrals can deal with them. The
tag is used to identify that they are wrapped integrals.

tag works like the type information of compile-time data-structures. Polymorphic onat&bns in
Boost.MPL get thecag information of the arguments, instantiate a helper metafunction c¢lass [6] with
the tags as template parameters and pass the original arguments to that rtietaftiass. Different
specializations of the metafunction class can be created for differenatalygag combinations. Each
specialization implements one overload of the metafunction. Since a new sgaializan be imple-
mented without changing existing code, new overloads for newly cre¢asdes can be implemented
later.

Note that thenin andless metafunctions are already implemented in Boost.MPL. In this paper we
present how they are currently implemented, what features of them cacaamot be tested and how
they can be implemented in a way to improve their testability and error reporting.

The basic idea behind the existing compile time unit testing facility of Boost.MPL is riergée
syntactically erroneous code on failed assertions and make an effoectwade the compiler’s error
messages so relevant information stands out and can be relatively easiffied. To achieve this, the
library provides a handful of macros for different assertions andsigte organization. The following
assertion macros are available:

e BOOST_MPL_ASSERT ((predicate)) with predicate a nullary metafunction: Generate a compi-
lation error wherpredicate: : type::value !'= true, has no effect otherwise.

e BOOST_MPL_ASSERT NOT((predicate)) with predicate a nullary metafunction: Generate a
compilation error whepredicate:: type::value == true, has no effect otherwise.

e BOOST_MPL_ASSERT MSG(expression, message, (typel,type2,...)) with expression
an arbitrary integral constant expressiaessage a C++ identifier anctypeN arbitrary types:
Generate a compilation errordkpression != true, including thenessage itself and the listed
types in the error message (effectively exploiting the compiler’s own preittiipg capabilities).

e BOOST_MPL_ASSERT RELATION(x, relation, y) with (x relation y) alegal C++ expres-
sion: Generate a compilation error(i¢ relation y) == false, has no effect otherwise.

For test suite organization, Boost.MPL provides the special m#&oTEST_CASE, which expands
to a unigue function name that has the line number of the current expassacsu#ix. Since the function

2

Towards more reliable C++ template metaprograms Sinkovics et al.

name in which a particular syntax error occurs is normally output along wittlgkeription of the error
itself, this can help determine where bodies of failed assertions are locdteglonginal source code.

3 A smpleexample

Consider the following example in which we try to test. We refer to thevoost : :mpl namespace as
mpl.

MPL_TEST_CASE()
{
MPL_ASSERT ((
boost::is_same<
min< mpl::int_<5>, mpl::int_<7> >::type,
mpl::int_<5>
>
D)5

MPL_ASSERT ((
boost: :is_same<
min< mpl::int_<7>, mpl::int_<5> >::type,
mpl::int_<5>
>
)5
}

this code compiles without warnings which indicates the snippet has passtgbts, and an executable
is created with the sole reason to print on the screen what we already-ktidaerrors detected.”. For
the next snippet we change the expected results to violate the assersieerstiadly simulating library
bugs.

MPL_TEST_CASE()
{
MPL_ASSERT ((
boost::is_same<
min< mpl::int_<5>, mpl::int_<7> >::type,
mpl::int_<6>
>
));

MPL_ASSERT ((
boost::is_same<
min< mpl::int_<7>, mpl::int_<5> >::type,
mpl::int_<6>
>
));
}

From this codesCC generates the following compiler errors:

3

Towards more reliable C++ template metaprograms Sinkovics et al.

mintest.cpp: In function ’void test9()’:
mintest.cpp:11:3: error: no matching function for call to
’assertion_failed (mpl_: :failedsk*xkkkkkkkskk
boost: :is_same<mpl_::int_<5>, mpl_::int_<6> >::xkkkkokkkkkkk)’
mintest.cpp:17:3: error: no matching function for call to
’assertion_failed (mpl_: :failedskkkskkkxkskkkkk
boost::is_same<mpl_::int_<5>, mpl_::int_<6> >::kkkxskkokkkkkk)’

This output can be thought of as a harsh unit test report: the functioe te@st9 identifies line 9 as the
location of the problematic test case declaration, and the “no matching funétioressages pinpoint
and describe failed assertions.

Clearly, while arguably usable and helpful, this output is difficult to reahén this trivial example.
In fact, it gets worse. When compiled with ang, a compiler with considerably more sophisticated di-
agnostic capabilities thagtc, there is an approximately tenfold growth in output size. The real problem
is that while the compiler goes out of its way to produce the most detailed eportr its very efforts
are turned into a hindrance as the information artificially injected in the erroragessecomes more
and more lost in the noise. Another major issue is the non-standard forrtieg ofitput which means
automatic processing would be difficult and certainly not portable.

4 Our approach

The basic principle of our approach is to compile the source, evaluateasss at compile time and
generate an executable that outputs a detailed and customizable repcetresiths. The exact pro-
cedure is as follows. Test cases are written as nullary metafunctionsingtuvrapped boolean values.
These metafunctions are evaluated and, depending on the fail/suctessssteeport items are generated
utilizing the framework’s own type pretty printing facility. Pretty printing is negdie display detailed
error messages. For example when a test case compares the resultafienation evaluation with the
expected value and they differ, the test framework should display th& ee&l the expected value in the
report. Our solution achieves this by generating a string at compile-time cmgtaiththese details. To
generate these, we need to be able to convert classes — data, metaprogesate on — into strings. A
number of similar approaches have addressed this issue $o ffar [\DuBhpproach takes Boost.MPL
andtags into account. We have implemented our solution as a special metafunetienream, which,

as a class, provides a statiean method taking an output stream as its parameter and pretty printing the
type to the stream. To use it with a custom type, one has three options.

e to_stream can be specialized directly.

e Classes built withto_stream in mind can contain an inner typep_stream, with a staticrun
method implementing pretty printing.

e For classes with aag, tag-dispatched metafunction class stream_impl is provided and can
be specialized.

The above options are checked in the order they are presented, tlaxaifople thecag of a class with
ato_stream inner class is never checked. The above options for specializatiorarenstrated in the
following example.

Towards more reliable C++ template metaprograms Sinkovics et al.

struct UDT; // UDT stands for User Defined Type
struct UDT_tag;
struct tagged UDT { typedef UDT_tag tag; 1};

struct UDT_with_to_stream

{
struct to_stream
{
static std::ostream& run(std::ostream& os)
{
return os << "UDT_with_to_stream";
}
+;
};
template<>
struct to_stream<UDT>
{

typedef to_stream type;

static std::ostream& run(std::ostream& os)

{
return os << "UDT";
}
s
template<>
struct to_stream_impl<UDT_tag>
{

template <typename Type>
struct apply
{

typedef apply type;

static std::ostream& run(std::ostream& os)
{
return os << "tagged_ UDT";
}
+;

Test results are collected in STL containers in a test suite hierarchy, ehefravhich is located in a
global test driver object. This hierarchy is accessible through an iteraarface. Test result objects
provide their own methods via which fail/success statuses, test namestaieddéescriptions can be
queried.

Our implementation defines a class for test results with the following public methods

5

Towards more reliable C++ template metaprograms Sinkovics et al.

class test_result
{
public:

/] ...

test_result(bool success, const std::string& reason);

bool success() const;
const std::string& get_reason() const;
/...

s

These methods can be used to query the the fact wether the test casedsacor not and the pretty-
printed reason at runtime. These objects can be constructed by a templterfuaking the test case
as a template argument:

template <class F>
test_result run_test()
{
std::ostringstream s;
to_stream<F>: :run(s);
return test_result(F::type::value, s.str());

}

The function evaluates the test case by accessing its nested typetgaltedThe result is expected to
be a boxed logical value. To unbox it, the function uses the nestbdke and passes it to the constructor
of test_result. The function useso_stream to pretty-print the test function and passes the result to
thetest_result constructor.

The test cases are collected imgst suites. A test suite can contain test cases and other test suites,
thus the tests are collected in a tree structure of nested suites. This hydsabeiilt at runtime, by the
constructors of global objects. We do not present the details of thesérgctors and the types forming
the tree here, they can be found|in [5]. This tree can be processegjbyar C++ code, the root can be
accessed as a singleton object. The tree provides STL-like iteratorscisprite children of each node.
This data-structure can be used to either generate a report directly tedosite compile-time tests into
runtime testing frameworks. In our implementation we provide a number oftrgpoerators and a tool
that adds compile-time tests to the Boost unit testing framework’s test suitedfigra

Test cases are registered in the driver by constructors of globaitebf@ur implementation provides
a convenient macro for creating these global objects. It takes two pemarean object representing
the location of the test case in the test suite hierarchy and the name of the mogtafu In-line test
case declarations, like the ones which can be defined with the cBO@ST_MPL_ASSERT macro, are not
supported. This approach has a positive side-effect: when the sEstoatains compilation errors, the
diagnostic messages will point to the definition of the test case as opposed®odkt solution in which
they point to the macro call. This difference becomes significant when theatss exceeds a single line,
as our approach enables the compiler to locate the failure in the sourcencoe@ccurately.

The tree structure the test results are collected in is available and can éséchat runtime. Code
based on an unit testingt framework dealing with runtime code can travesgestnand register the tests
results in the runtime unit testing framework. Adapters for different runtinietasting frameworks can
be developed. Our implementation provides an adapter for Boost. Test.

6

Towards more reliable C++ template metaprograms Sinkovics et al.

5 Unit testsfor min revisited

With the above applied, we get the following test suitenfon.

const suite_path suite = suite_path("sample") ("suite");

typedef boost::is_same<
min< mpl::int_<5>, mpl::int_<7> >::type,
mpl::int_<5>
> testl;
ADD_TEST(suite, testl)

typedef boost::is_same<
min< mpl::int_<7>, mpl::int_<5> >::type,
mpl::int_<5>
> test2;
ADD_TEST (suite, test2)

By compiling it, the unit tests are executed. By linking it together with an objectdilgaining anain
function that calls a report generator, an executable is generatedish&tyd the test summary. For
example by using the plain text report generator we provide with our impleti@ntahe following
output is generated:

The following tests have been executed:
suite::testl: OK
suite::test2: OK

Number of tests: 2
Number of failures: O

Now, to simulate library bugs, we modify the suite.

typedef boost::is_same<
min< mpl::int_<5>, mpl::int_<7> >::type,
mpl::int_<6>
> testl;
ADD_TEST(suite, testl)

typedef boost::is_same<
min< mpl::int_<7>, mpl::int_<5> >::type,
mpl::int_<6>
> test2;
ADD_TEST (suite, test2)

When run the test cases, we expect two failures. This yields the followimgsry.

7

Towards more reliable C++ template metaprograms Sinkovics et al.

The following tests have been executed:
suite::testl: FAIL (mintest.cpp:16)
is_same<int_<5>, int_<6>>
suite::test2: FAIL (mintest.cpp:22)
is_same<int_<5>, int_<6>>

Number of tests: 2
Number of failures: 2

Besides being concise, this output no longer depends on the compiler €tlediormat is standard, but
also customizable.

6 Reportingerrors

To test a metafunction properly, one has to implement tests verifying the ibaha¥ the functions for
valid and for invalid input as well. When a metafunction breaks the compilatimeegs (which is similar
to a unit test causing a core-dump in run time tests), the unit testing frameaonkat generate a test
report. To make metafunctions testable for invalid input, they must not breatothpilation process.
less is a metafunction taking 2 arguments: the two values to compare. Following th#osolu
Boost.MPL uses to make template metafunctions polymorphic, we defiethe following way:

template <class T1, class T2>
struct less_impl;

template <class a, class b>
struct less : mpl::apply<
less_impl<
typename mpl::tag<a>::type,
typename mpl::tag::type
>, a, b

> {};
We can implementess for integrals by specializingess_impl for integral c_tag:

template <>
struct less_impl<integral_c_tag, integral_c_tag>
{

template <class A, class B>

struct apply

{
typedef mpl::bool<(A::value < B::value)> type;
3
s

Assume that later we need to develop the following compile-time data-structueptesent rational
numbers:

Towards more reliable C++ template metaprograms Sinkovics et al.

struct rational_tag;

template <class Numerator, class Denominator>
struct rational

{

typedef rational_tag tag;

/7. ..

s

To make rational numbers comparable usiegs, we create a new specializationlafss_impl:

template <>
struct less_impl<rational_tag, rational_tag>
{
template <class A, class B> struct apply /*...*/;
s

This is howless is implemented in Boost.MPL. We should create unit testd éass. First, we need to
make sure thatess works for wrapped integrals:

typedef
less<mpl::int_<int, 11>, mpl::int_<int, 13> >
test_less_for_integrals;

This compares two integrals usingss and verifies the result of the comparison. Other cases — such as
cases wheness should returnfalse — can be tested in a similar way. We should create another unit
test checking thatess does not work for arguments that can not be compared:

less<mpl::list_c<int, 1, 2>, mpl::list_c<int, 3> >

Boost.MPL’s implementation, we have presented here, emits a compilation estmthircases, since the
general case dfess_impl is not implemented. We have no chance to catch that error in a unit testing
environment.

We propose an extension déss and template metafunctions in general to return a special value
indicating error instead of emitting a compilation error. It can be procesgdatidocode calling the
metafunction. Only a top-level metafunction returning error should cawusergilation error. A new
compile-time data type can be used to describe errors. Error values cardascription of the error,
which is an arbitrary compile-time data structure.

struct exception_tag;

template <class Data>
struct exception
{
typedef exception_tag tag;
typedef exception type;
s

template <class Exception>
struct get_data;

Towards more reliable C++ template metaprograms Sinkovics et al.

We create a new tagxception_tag, for error values and thexception template to represent error
values. The custom data an error value holds can be accessed usgyg theta metafunction. Its
implementation can be found inl[5]. Usirgception we can implement the general, non-specialized
case oOfless:

struct not_comparable;

template <class T1, class T2>
struct less_impl

{
template <class A, class B>
struct apply
{
typedef exception<not_comparable> type;
3
I

We created a helper classt _comparable, representing the error message. Specializatiohsf_impl
can implement comparison and return the results. When there is no specializagigeneral imple-
mentation takes care of returning thet_comparable error. Now we can implement the test checking
the behavior ofiess when called with arguments that cannot be compared:

template <class X>
struct is_error /* check if X is an exception */;

typedef boost::is_error<
less<mpl::1list_c<int,1,2>, mpl::1list_c<int, 3> >
> test_less_with_non_comparable;

We can usédess to implementmin. min takes two arguments, compares them udiags and returns
the smaller one. It is implemented the following way in Boost.MPL.:

template <class A, class B>
struct min : mpl::if_<less<A, B>, A, B> {};

When the arguments are comparable, it works fine. However, when thargguments can not be com-
pared,less returns arexception, not a wrapped boolean value, which breaks. We could expect
if_to return an error when the condition is not a boolean value, but in thatmdaswould return an
error indicating that f s condition was not a boolean value. This error message would hideitfieadr
reason that the two arguments cannot be compared. We need to chemidib are comparable, return
an error when they are not and return the smaller value when they are:

template <class A, class B>
struct min : mpl::eval_if<
typename is_error<less<A, B> >::type,

less<A, B>,
mpl::if_<less<A, B>, A, B>
> {};

10

Towards more reliable C++ template metaprograms Sinkovics et al.

This version ofnin can deal with incomparable arguments, as well, and reports meaningfuhees-
sages. These error messages don’t break the compilation procesg.refiarn errors a unit testing
framework can process and add to the generated report.

Following the approach presented above, propagation of errors hasitgplemented manually by
explicitly checking the return value of every metafunction being called. Tlageslious and error prone
process, which can be significantly improved by using monads [12]. A eumbdifferent monads
exist for dealing with error propagation. Given the complexity of the of topie don’t cover it in this
paper. It is important to note that using the approaches described ifofl@iror-propagation require
the modification of the metafunctions in the entire chain. However, the paesemts a technique that
makes these changes syntactically trivial (wrapping the body of the metafus withtry <...>). The
technique impacts compilation time, however, based on the measurements inghetges a constant
cost.

Template metaprograms are compiled and evaluated during the compilation of theo@Ge they
are embedded into. It makes it difficult to differentiate between the two stepgver the difference
becomes significant when the code is tested. Syntax errors of the dadddsted or the tests themselves
can not be caught by the testing framework. Since syntax errors tireaompilation process, the tests
are not compiled and not executed, thus no report can be generatederctises. The testing framework
can check the result of assertions during the execution of the metapregréhe fact that both the
compilation and the execution of the metaprograms happen during the compiltien++ code may
be confusing for the developer.

7 Evaluation

Boost.MPL has a large number of unit tests. They use static assertionsa@htg compilation errors
in case of failed test cases. We have ported a number of the Boost.MPLotestisframework([5]. We
changed the expected results of the test cases to simulate library bugmahe tests to see the error
reports. We have run our tests with three different compilers: gcc 4lar#y .8 and Visual C++ 10.

¢ With the solution based on static assertions we got compilation errors, wigereabon was in-
side long error reports. The length and verbosity of the error rep@ssdifferent with different
compilers. The format of the error report was different with differmornpilers.

e With the approach presented in this paper the error reports showedaganref the failure only.
The format of the report was the same with every compiler.

We have presented a new approach for implementing template metafunctiohscahibe tested for
success and for failure as well. Following this approach metafunctionsrgpecial values instead of
breaking the compilation process. Unit testing frameworks can detectihkss and generate reports
based on them.

8 Related work

A number of unit testing frameworks are available for C++.

e The Boost library collection has a test library for testing C++ code. li$es on testing runtime
C++ code. It supports organizing test cases into a hierarchical steusttest suites. A test case
consists of a number of assertions.

11

Towards more reliable C++ template metaprograms Sinkovics et al.

e The Boost template metaprogramming library has its own unit tests and usesoted library.
Its testing method is based on compile-time assertions, thus the developerrgpt&ton errors
for failed test cases. These compilation errors are difficult to understad on some compilers
overly verbose. The quality of failure reporting is heavily dependernihercompiler.

e Google has a C++ testing framewoftk [4] for testing runtime code. It stp@owide range of
assertions with useful diagnostic information in case of failed assertidnsrovides tools for
displaying useful diagnostic information for new user defined predicdtesso supports writ-
ing code for printing user defined data types. These features pramidarsfunctionality to our
to_stream solution at runtime.

e CppUnit [2] is the C++ port of JUnit]1], a popular unit testing framewéok Java. It supports
creating test suites and different test cases and it can generatatcatepg passed and failed test
cases. Testing is based on runtime assertions. It supports testing runtime co

9 Conclusion

Easy to use test tools, proper error handling and reporting is wealkihpsgigo in C++ template metapro-
gramming. In this paper we have presented solutions improving these &¥easave implemented a
testing framework with advanced and portable error reporting capabilitgethe results of compile time
tests are collected in a runtime data-structure, it can be easily integratedrictosvaopular unit testing

frameworks. We have ported many of the Boost.MPL unit tests to our frarkesval have achieved
more portable error reporting. All solutions have been implemented as arsopece library([B].

References

[1] Junit project home page, 2010. http://www.junit.org/.

[2] Cppunit project home page, 2011. http://sourceforgiapps/mediawiki/cppunit/index.php?title=Mdhage.

[3] Geordi— c++ eval bot, 2011. http://www.xs4all.nl/ weedeelis/geordi.

[4] Google c++ testing framework, 2011. http://code.geogppm/p/googletest/.

[5] Abel Sinkovics. The source code of mpllibs, 2010. Availadsenttp:/github.com/sabel83/mpllibs.

[6] David Abrahams and Aleksey Gurtovady++ Template Metaprogramming: Concepts, Tools, and Techniques
from Boost and Beyond (C++ in Depth Series). Addison-Wesley Professional, 2004.

[7] Andrei Alexandrescu.Modern C++ design: generic programming and design patterns applied. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[8] Krzysztof Czarnecki and Ulrich W. Eiseneck&enerative programming: methods, tools, and applications.
ACM Press/Addison-Wesley Publishing Co., New York, NY, USR00.

[9] Aleksey Gurtovoy and David Abrahams. Boost.mpl, 200dp:Wwww.boost.org/doc/libs/#7_0/libs/mpl/
doc/index.html.

[10] Scott Meyers. Appearing and disappearing consts in, c2611. Available as http://cpp-
next.com/archive/2011/04/.

[11] Zoltan Porkohb, bzsef Mihalicza, anddam Sipos. Debugging c++ template metaprogramBraéceedings
of the 5th international conference on Generative programming and component engineering, GPCE 06,
pages 255-264, New York, NY, USA, 2006. ACM.

[12] Abel Sinkovics and Zo#n Porkob. Implementing monads for c++ template metapro-
grams. Technical Report TR-01/2011, 6t#®s Lorand University, Faculty of Informat-
ics, Dept. of Programming Languages and Compilers, Sepemp011. Available as
http://plcportal.inf.elte.hu/en/publications/TectaiReports/monad-tr.pdf.

12

	Introduction
	Existing unit testing facility in Boost
	A simple example
	Our approach
	Unit tests for min revisited
	Reporting errors
	Evaluation
	Related work
	Conclusion

