
STUDIA UNIV. BABEŞ–BOLYAI, INFORMATICA, Volume LV, Number 1, 2010

UNIT TESTING OF C++ TEMPLATE METAPROGRAMS

ÁBEL SINKOVICS

Abstract. Unit testing, a method for verifying a piece of software, is a
widely used technique and a good practice in software development. A
unit, the smallest testable element of a software is verified in isolation.
Tools for the development and execution of unit tests are available for a
number of programming languages, such as C, C++, Java, C#, Python,
Perl, Erlang, etc.

Unfortunately, the development of C++ template metaprograms has
only limited support for this technique. To improve software quality, cre-
ation and maintenance of unit tests should be part of the development of
C++ template metaprogramming libraries. In this paper we present how
unit tests can be built and executed for C++ template metaprograms and
how they fit into the development process of C++ libraries and applica-
tions. We present tools that help the developers in building unit tests for
C++ template metaprograms. We also present how we applied them on a
number of C++ template metaprogramming libraries.

1. Introduction

In 1994 Erwin Unruh demonstrated that the C++ compiler can execute
algorithms by using templates in a special way. [1] This technique is called
C++ template metaprogramming and it became a widely used technique.
C++ template metaprograms form a Turing-complete sub-language of C++.
[2] This capability was not taken into account during the development of the
C++ standard, thus the syntax of template metaprograms is not friendly. It
is hard to write, understand and maintain them, their development is a highly
error-prone process. In many cases, C++ template metaprograms are written
for a specific purpose, they are validated against that one special case and no
further testing is done. As a result, hidden bugs may remain uncovered until
the template metaprogram is reused in other situations or used in a different
environment, such as another platform or compiler. Because of their complex

Received by the editors: 14th February 2011.
2010 Mathematics Subject Classification. code, code.
1998 CR Categories and Descriptors. code [D.2.5]: Testing and Debugging – Testing

tools; code [D.3.2]: Language Classification – C++.
Key words and phrases. template metaprogramming, C++, testing, boost.

1



2 ÁBEL SINKOVICS

syntax, debugging template metaprograms [3] later, months or maybe years
after they’re written is a difficult thing which should be prevented with proper
testing.

The rest of the paper is organised as follows. In section 2 we present our
solution for the problem, in section 3 we evaluate it and compare it to the tech-
nique used in the Boost template metaprogramming library. We summarise
our results in section 4.

2. Our approach

We have built a unit testing framework for C++ template metaprograms.
In this section we present how our solution works, what the major difficulties
are with unit testing metaprograms in general and how we have solved them.
We have published our framework as an open-source project [5].

A C++ template metaprogram is executed at compile time. To test such a
code, the test has to be evaluated at compile time as well. Template metapro-
gramming follows the functional paradigm, metaprograms consist of template
metafunctions and the execution of a metaprogram is the evaluation of a meta-
function, which invokes a number of other metafunctions. Thus, code testing
template metaprograms has to be a template metafunction. The test is ex-
ecuted by evaluating the test template metafunction. Assume that we have
a metafunction, plus that calculates the sum of two numbers. Here is the
declaration of it:

template <class a, class b> struct plus;

We can write the following code that tests it:

typedef boost::mpl::equal_to<

plus< boost::mpl::int_<11>, boost::mpl::int_<2> >::type,

boost::mpl::int_<13>

> TestPlus;

equal to is a metafunction that compares two values, int is a wrapper for
integer values. They are part of the Boost library [6]. TestPlus is a nullary
metafunction, which is a metafunction taking zero arguments. It is evaluated
when its nested class called type is accessed [7]. The metafunction evaluates
plus with two arguments, 11 and 2, and verifies that it evaluates to 13. The
value of TestPlus is a boolean value, the result of the test. When the test is
successful, the value is true. When the expected and actual results differ, the
value is false.

We have seen so far how test code for template metaprograms can be im-
plemented. The metafunction implementing the test can evaluate to a boolean
value, which is true when the test is successful and false when it isn’t. The
major difficulty is how the result can be represented in a structured way.



UNIT TESTING OF C++ TEMPLATE METAPROGRAMS 3

A template metaprogram is executed as part of the compilation process,
thus the template metaprogram runs inside the compiler and the input and
output possibilities of it are limited. The only source of input data is the code
under compilation. There are more possibilities for output data. Template
metaprograms are template metafunctions, that evaluate to a class. That
class can be used by the rest of the code, its static members become part of
the compiled code. When there are errors during the evaluation of template
metaprograms, the compiler emits warnings or errors. The latter causes the
compilation process to fail. As a summary, the input of a template metapro-
gram is the compiled source code, the outputs of a template metaprogram are
the warning and error messages and the compiled code. Tests come from the
source code. We present how the different output channels can be used to
display the result of the test execution.

2.1. Displaying results as error messages. One of the output channels
is the list of error and warning messages. Boost provides a macro for static
assertion, BOOST STATIC ASSERT, that takes a compile time boolean value as
argument and emits a compile error, when the value is false. We can use it
to emit a compile error when a test fails. We need to evaluate the test first.
It evaluates to a boolean value: true when the test was successful and false,
when it wasn’t. This value can be passed to BOOST STATIC ASSERT. When the
test was not successful, the compilation fails.

The drawback of static assertion is that failed tests are displayed as error
messages, that are complex and difficult to interpret. The compiler is not
prepared for displaying an easily readable summary of which tests failed and
which ones passed.

2.2. Displaying results using the generated code. The other output of
template metaprograms is the generated code. Template metaprograms can
generate executable code that becomes part of the compiled program and can
be executed at runtime.

We propose an approach where the test driver executes the tests at com-
pile time and generates runtime code, that displays the results in a human
readable format. Template metaprograms are evaluated at compile time, thus
test execution has to happen at compile time. Once tests are executed, the
results can be displayed at any stage of the compilation and program execu-
tion process. We have very limited control over the way the C++ compiler
displays information as error and warning messages, but we have full control
over how runtime code displays output.

Code generation from template metaprograms happens by adding static
member functions to classes implementing template metafunctions. We al-
ways call this static member function run. For example, here is a template



4 ÁBEL SINKOVICS

metafunction that takes a wrapped boolean value as an argument and gener-
ates code that displays the word passed or FAILED on the standard output
depending on the value of the compile time argument:

template <class b>

struct display_result

{

static void run()

{

std::cout << (b::value ? "passed" : "FAILED");

}

};

When display result is instantiated, the compiler generates a function by
substituting b with the actual template argument in the code of run. The
generated run function can be executed at runtime. The result of tests can be
displayed using it.

We can execute tests at compile time and display the results at runtime.
But the code executing tests and displaying the results has to be in the main
function or it has to be called from the main function. Thus, when developers
want to implement their tests in multiple compilation units, they have to
explicitly call that code from main.

It can be done implicitly. Before the main function is executed, the static
objects are constructed and their constructors are executed. [8] We can use
this feature to execute code at runtime, that is not explicitly called from the
main function. We create a class for every test execution and add the code
displaying the result to the constructor of the class. For example we do the
following for TestPlus:

struct RunTestPlus {

RunTestPlus() {

std::cout << "TestPlus: ";

display_result<TestPlus::type>::run();

std::cout << std::endl;

}

static RuntTestPlus staticInstance;

};

Every time RunTestPlus is instantiated, it displays the result of the test called
TestPlus. Note that the test is executed exactly once at compile time re-
gardless of how many times it is displayed at runtime. To display the test
results when the compiled code is started, we created a static instance of



UNIT TESTING OF C++ TEMPLATE METAPROGRAMS 5

RunTestPlus. The only purpose of it is that when it is created, its construc-
tor displays the result of TestPlus. The main function can remain empty, and
can be in its own compilation unit. Things will still work.

This solution works for generating simple reports. To build more complex
reports, such as an HTML summary, we need to generate a container of the
results available at runtime and can be passed to runtime code generating the
report.

We need a data-structure that describers the result of one test case. Here
is an example implementation of it:

class TestResult {

public:

TestResult(const std::string& name, bool result);

const std::string& name() const;

bool result() const;

// ...

};

The instances of TestResult are immutable, because they describe the results
of a test executed at compile time. Their values are not dependent on anything
that happens at runtime. We can build a list of them at runtime:

std::list<TestResult> getResults()

{

std::list<TestResult> results;

results.push_back(TestResult("TestPlus", TestPlus::value));

// ...

return results;

}

Every time getResults is called, it generates a runtime list containing the
results of the test executions. This solution has the same problem we saw
earlier. Every test case has to be added to getResults explicitly. The idea
of using static objects and executing code in their constructors can be reused
here. We can create classes for each test case. These classes can add the result
of the test to the result list.

The list containing the results has to be a static object, otherwise it would
be initialised after the objects that register the test results. There is no guar-
antee in which order the static objects are initialised across compilation units
[8].

This problem has already been solved by the singleton classes of the Boost
library. It supports the creation of singleton instances of classes. We create a
wrapper for std::list<TestResult> and a singleton instance of that class.
We call the wrapper class TestDriver and add test-registration logic to it.



6 ÁBEL SINKOVICS

class TestDriver

{

public:

typedef std::list<TestResult>::const_iterator iterator;

iterator begin() const;

iterator end() const;

// ...

};

We provide the iterator interface through const iterators, so runtime code
can’t change the results.

We add a member function for executing tests. We can do it in two possible
ways. One possibility is adding a member function that takes a boolean value,
the result of the test execution. For example:

class TestDriver

{

public:

void addTest(const std::string& name, bool result);

// ...

};

The problem with this solution is that test execution happens before addTest

is called, and it is called with result of the test execution. When test execution
goes well, addTest is called with a boolean value. When the test case is invalid,
for example when it is not a nullary metafunction or when its value is not a
wrapper of a boolean value, the compiler displays an error message, that is
difficult to interpret and no code, no report is generated.

This can be solved if TestDriver takes the test itself as argument and
not only its result. The test itself is a nullary template metafunction, which
is a class. addTest can be a template member function [8] taking a class as
argument:

class TestDriver {

public:

template <class testCase>

void addTest(const std::string& name);

// ...

};

When addTest is instantiated with a test case, the test case is not executed
unless other code explicitly evaluated it. addTest can evaluate it and han-
dle some cases when the evaluation of it would lead to a compilation er-
ror. addTest can verify if it has a nested class called type and if that class



UNIT TESTING OF C++ TEMPLATE METAPROGRAMS 7

has a static constant member called value. When these things are missing,
it doesn’t break the compilation, addTest can register that the test failed.
TestResult can be extended with a comment filed, where addTest can dis-
play the reason why the test case failed to simplify debugging.

3. Evaluation

We compare our testing framework to the unit testing tools used to unit
test the Boost template metaprogramming library. The unit tests for that
library are in separate files, each file includes a header containing a main

function to display the results. Each file uses macros to wrap the unit tests and
to do static asserts. The verification of the success or failure of the unit tests
happens by using compile-time assertions, thus when a test case fails it breaks
the compilation of that specific compilation unit. A separate executable is
built from each compilation unit. Their main function display a summary, but
since failing test cases break the compilation, these summaries are displayed
only when there are no errors. In comparison, our framework provides a way
to execute all unit tests regardless of the number of failures and display a
report about the failing test cases.

We have measured the compilation time with both approaches. The compi-
lation time contains the execution of the tests themselves, since test execution
happens at compile time. We have done two types of measurements:

• We run the same test several times within one compilation unit. We
were using different values to make sure the compiler has to instanti-
ate everything in all cases. Every test execution requires the testing
framework to deal with the results. Figure 1 shows the results. We
can see that execution time grows in a linear scale for both testing
frameworks. For our solution it grows a little faster, which means that
processing the result of a test case happens slower in our solution.

• We didn’t change the number of the tests, we changed their execution
time. We were running a linear algorithm, linear search, with different
input lengths. We were always searching the last element of the input
to make sure that the search has to iterate over the entire input. The
testing framework had to deal with the same number of results, regard-
less of the execution time of the test cases. Figure 2 shows the results.
We can see that there is a constant difference between the compilation
times with the two approaches, which means that the extra overhead
our solution has for processing the results of a test case is constant.

We did our measurements on a Linux pc with an Intel Atom 1.6Ghz pro-
cessor and 1 GB memory. We were using gcc version 4.4.3. We were using the
time command to measure compilation time.



8 ÁBEL SINKOVICS

Figure 1. Increasing number of test cases

Figure 2. Increasing execution time of test cases

We have been using our framework in the development of a number of
complex template metaprogramming libraries [5]. We have been unit testing
our framework with itself as well.

4. Summary

We have demonstrated a way of building unit testing frameworks for tem-
plate metaprogramming generating meaningful summaries. We have built a
framework using this method, which is available as an open-source project [5].

We have compared our solution to the tools the most widely used template
metaprogramming library, boost::mpl is tested with. We have seen, that our
approach gives a better report about success and failure of test cases.



UNIT TESTING OF C++ TEMPLATE METAPROGRAMS 9

In the future, these ideas can be reused in other metaprogramming con-
texts and add value to them as well. Another future work is adding intro-
spection capabilities to the framework to detect how a specific test case works
and give more meaningful error messages. For example detect when the test
case compares the result of a tested function to another value and when the
comparison fails, the error report could display the different values as well.
Logical operators, such as and, or, etc in the test case could be detected and
in case of a failure, the root cause of the failure could be pointed out more
accurately by the framework. These changes can be done without changing
existing test code.

References

[1] E. Unruh, Prime number computation, ANSI X3J16-94-0075/ISO WG21-462.
[2] K. Czarnecki, U. W. Eisenecker, Generative Programming: Methods, Tools and Appli-

cations, Addison-Wesley, 2000.

[3] Porkoláb, Z., Mihalicza, J., Sipos, Á.: Debugging C++ Template Metaprograms, in
proc. of Generative Programming and Component Engineering (GPCE 2006), The ACM
Digital Library pp. 255–264, (2006)

[4] Porkoláb, Z., Mihalicza, J., Pataki, N., Sipos, Á.: Analysis of profiling techniques for
C++ template metaprograms, Annales Universitatis Scientiarum Budapestinensis de
Rolando Etvs Nominatae, Sectio Computatorica, 30:97-116 (2009)

[5] The source code of mpllibs
http://github.com/sabel83/mpllibs

[6] The Boost libraries.
http://www.boost.org

[7] Ábel Sinkovics, Functional extensions to the Boost Metaprogram Library, In Porkolab,
Pataki (Eds) Proceedings of the 2nd Workshop of Generative Technologies, WGT’10,
Paphos, Cyprus. pp.56–66 (2010), ISBN: 978-963-284-140-3

[8] ANSI/ISO C++ Committee, Programming Languages – C++, ISO/IEC 14882:1998(E),
American National Standards Institute, 1998.

Dept. of Programming Languages and Compilers, Pázmány Péter sétány
1/C H-1117 Budapest, Hungary

E-mail address: abel@elte.hu


